Skip to main content

Topsoil and urban dust pollution and toxicity in Taranto (southern Italy) industrial area and in a residential district

Abstract

Adverse environmental conditions in the Taranto area (southern Italy) were investigated in studies of air, marine sediment, and human health. The present study aimed at providing unprecedented information on soil pollution and toxicity in a set of sites around recognized pollution sources in the Taranto area, since previous studies were focused on marine or air pollution, or on human health effects. The investigated area included a steel foundry and a power plant, as well as some sites located in an adjacent neighborhood. Surface soil samples and urban dust were collected and submitted to inorganic and organic analyses and tested for toxicity in two invertebrate bioassay models; a sea urchin (Sphaerechinus granularis) and an annelid (Caenorhabditis elegans). Inorganic analysis was carried out using ICP-MS for elemental composition for a total of 34 elements, whose levels were evaluated as a function of bioassay data analyzed through principal component analysis (PCA). Other analyses included asbestos search by powder X-ray diffraction (PXRD) and organic analysis for polycyclic aromatic hydrocarbons (PAHs) and aliphatic compounds (C10–C40). Toxicity bioassays were carried out on a sea urchin (Sphaerechinus granularis), and an annelid (Caenorhabditis elegans). Sea urchin bioassays evaluated effects of topsoil or street dust sample exposures (0.1 to 0.5% dry wt/vol) on developing embryos and on sperm, and scored as (a) % developmental defects, (b) inhibition of fertilization success and offspring damage, and (c) frequencies of mitotic aberrations. C. elegans mortality assay displayed significant toxicity associated with soil samples. The overall effects of samples showed very high toxicity at four out of nine sites. These effects were consistent with the highest levels measured for metals and PAHs. Further studies of health effects related to dust exposures in residential areas are warranted.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

References

  • Agnieszka, B., Tomasz, C., & Jerzy, W. (2014). Chemical properties and toxicity of soils contaminated by mining activity. Ecotoxicology, 23, 1234–1244. https://doi.org/10.1007/s10646-014-1266-y.

    Article  CAS  Google Scholar 

  • ARPA Puglia. (2016). Relazione sui dati ambientali dell’area di Taranto. http://www.arpa.puglia.it/c/document_library/get_file?uuid=96dc386e-2a6d-4758-8c47-e4d15d367c70&groupId=10125.

  • ASTM E2172–01. (2014). Standard guide for conducting laboratory soil toxicity tests with the nematode Caenorhabditis elegans.

  • Cardellicchio, N., Annicchiarico, C., Di Leo, A., Giandomenico, S., & Spada, L. (2016). The mar piccolo of Taranto: an interesting marine ecosystem for the environmental problems studies. Environmental Science and Pollution Research International, 23, 12495–12501. https://doi.org/10.1007/s11356-015-4924-6.

    Article  Google Scholar 

  • Comba, P., Pirastu, R., Conti, S., De Santis, M., Iavarone, I., Marsili, G., Mincuzzi, A., Minelli, G., Manno, V., Minerba, S., Musmeci, L., Rashid, I., Soggiu, E., & Zona, A. (2012). Environment and health in Taranto, southern Italy: epidemiological studies and public health recommendations. Epidemiologia e Prevenzione, 36, 305–320.

    Google Scholar 

  • Costa, E., Piazza, V., Gambardella, C., Moresco, R., Prato, E., Biandolino, F., Cassin, D., Botter, M., Maurizio, D., D’Adamo, R., Fabbrocini, A., Faimali, M., & Garaventa, F. (2016). Ecotoxicological effects of sediments from Mar Piccolo, South Italy: toxicity testing with organisms from different trophic levels. Environmental Science and Pollution Research International, 23, 12755–12769. https://doi.org/10.1007/s11356-015-5471-x.

    Article  CAS  Google Scholar 

  • Escarré, J., Lefèbvre, C., Raboyeau, S., Dossantos, A., Gruber, W., Cleyet Marel, J. C., Frérot, H., Noret, N., Mahieu, S., Collin, C., & van Oort, F. (2011). Heavy metal concentration survey in soils and plants of the Les Malines Mining District (southern France): implications for soil restoration. Water, Air, and Soil Pollution, 216, 485–504. https://doi.org/10.1007/s11270-010-0547-1.

    Article  CAS  Google Scholar 

  • Franus, W., Wiatros-Motyka, M. M., & Wdowin, M. (2015). Coal fly ash as a resource for rare earth elements. Environmental Science and Pollution Research International, 22, 9464–9474. https://doi.org/10.1007/s11356-015-4111-9.

    Article  CAS  Google Scholar 

  • González-Alcaraz, M. N., Loureiro, S., & van Gestel, C. A. M. (2018). Toxicokinetics of Zn and Cd in the earthworm Eisenia andrei exposed to metal-contaminated soils under different combinations of air temperature and soil moisture content. Chemosphere, 197, 26–32. https://doi.org/10.1016/j.chemosphere.2018.01.019.

    Article  CAS  Google Scholar 

  • ISO - International Organization for Standardization 2016. UNI EN ISO 16171 (2016). Sludge, treated biowaste and soil - Determination of elements using inductively coupled plasma mass spectrometry (ICP-MS).

  • Jia, G., Torri, G., Centioli, D., & Magro, L. (2013). A radiological survey and the impact of the elevated concentrations of (210)Pb and (210)Po released from the iron- and steel-making plant ILVA Taranto (Italy) on the environment and the public. Environmental Science and Process Impacts, 15, 677–689. https://doi.org/10.1039/C2EM30784G.

    Article  CAS  Google Scholar 

  • Jiang, M., Zeng, G., Zhang, C., Ma, X., Chen, M., Zhang, J., Lu, L., Yu, Q., Hu, L., & Liu, L. (2013). Assessment of heavy metal contamination in the surrounding soils and surface sediments in Xiawangang River, Qingshuitang District. PLoS One, 8, e71176. https://doi.org/10.1371/journal.pone.0071176.

    Article  CAS  Google Scholar 

  • Jolliffe, I. T. (2002). Principal Component Analysis. Second edition. Berlin: Springer.

    Google Scholar 

  • Kanarbik, L., Blinova, I., Sihtmäe, M., Künnis-Beres, K., & Kahru, A. (2014). Environmental effects of soil contamination by shale fuel oils. Environmental Science and Pollution Research International, 21, 11320–11330. https://doi.org/10.1007/s11356-014-3043-0.

    Article  CAS  Google Scholar 

  • Leo, A., Annicchiarico, C., Cardellicchio, N., Cibic, T., Comici, C., Giandomenico, S., & Spada, L. (2016). Mobilization of trace metals and PCBs from contaminated marine sediments of the Mar Piccolo in Taranto during simulated resuspension experiment. Environmental Science and Pollution Research International, 23, 12777–12790. https://doi.org/10.1007/s11356-015-5472-9.

    Article  CAS  Google Scholar 

  • Liberti, L., Notarnicola, M., Primerano, R., & Zannetti, P. (2005). Air pollution from a large steel factory: polycyclic aromatic hydrocarbon emissions from coke-oven batteries. Journal of Air & Waste Management Association, 56, 255–260.

    Article  Google Scholar 

  • Loureiro, S., Ferreira, A. L., Soares, A. M., & Nogueira, A. J. (2005). Evaluation of the toxicity of two soils from Jales Mine (Portugal) using aquatic bioassays. Chemosphere, 61, 168–177. https://doi.org/10.1016/j.chemosphere.2005.02.070.

    Article  CAS  Google Scholar 

  • Mataloni, F., Stafoggia, M., Alessandrini, E., Triassi, M., Biggeri, A., & Forastiere, F. (2014). A cohort study on mortality and morbidity in the area of Taranto, Southern Italy. Epidemiologia e Prevenzione, 36, 237–252.

    Google Scholar 

  • Ministero dell’Ambiente (2006). Decreto legislativo n. 152/2006. Norme in materia ambientale. (G.U. n. 88 del 14 aprile 2006) Titolo V Allegato n°5- Tab. n°1.

  • Moschino, V., & Da Ros, L. (2016). Biochemical and lysosomal biomarkers in the mussel Mytilus galloprovincialis from the Mar Piccolo of Taranto (Ionian Sea, Southern Italy). Environmental Science and Pollution Research International, 23, 12770–12776. https://doi.org/10.1007/s11356-015-4929-1.

    Article  CAS  Google Scholar 

  • Narracci, M., Acquaviva, M. I., & Cavallo, R. A. (2014). Mar Piccolo of Taranto: Vibrio biodiversity in ecotoxicology approach. Environmental Science and Pollution Research International, 21, 2378–2385. https://doi.org/10.1007/s11356-013-2049-3.

    Article  CAS  Google Scholar 

  • Niemeyer, J. C., Moreira-Santos, M., Ribeiro, R., Rutgers, M., Nogueira, M. A., Mendes da Silva, E., & Sousa, J. P. (2015). Ecological risk assessment of a metal-contaminated area in the tropics. Tier II: Detailed assessment. PLoS One, 10, e0141772. https://doi.org/10.1371/journal.pone.0141772.

    Article  CAS  Google Scholar 

  • Oral, R., Pagano, G., Siciliano, A., Toscanesi, M., Gravina, M., Mozzillo, M., Di Nunzio, A., Palumbo, A., Thomas, P. J., Tommasi, F., Burić, P., Lyons, D. M., Guida, M., & Trifuoggi, M. (2019). Soil pollution and toxicity in an area affected by emissions from a bauxite processing plant and a power plant in Gardanne (Southern France). Ecotoxicology and Environmental Safety, 170, 55–61. https://doi.org/10.1016/j.ecoenv.2018.11.122.

    Article  CAS  Google Scholar 

  • Pagano, G., Esposito, A., Bove, P., de Angelis, M., Rota, A., & Giordano, G. G. (1983). The effects of hexavalent and trivalent chromium on fertilization and development in sea urchins. Environmental Research, 30, 442–452. https://doi.org/10.1016/0013-9351(83)90230-X.

    Article  CAS  Google Scholar 

  • Pagano, G., Korkina, L. G., Iaccarino, M., De Biase, A., Deeva, I. B., Doronin, Y. K., Guida, M., Melluso, G., Meriç, S., Oral, R., Trieff, N. M., & Warnau, M. (2001). Developmental, cytogenetic and biochemical effects of spiked or environmentally polluted sediments in sea urchin bioassays. In P. Garrigues, C. H. Walker, & H. Barth (Eds.), Biomarkers in marine ecosystems: a practical approach (pp. 85–129). Amsterdam: Elsevier.

    Google Scholar 

  • Pagano, G., De Biase, A., Doronin, Y. K., Iaccarino, M., Meriç, S., Petruzzelli, D., Tünay, O., Warnau, M., & Trieff, N. M. (2002). Bauxite manufacturing residues from Gardanne (France) and Portovesme (Italy) exert different patterns of pollution and toxicity to sea urchin embryos. Environmental Toxicology and Chemistry, 21, 1272–1278. https://doi.org/10.1002/etc.5620210623.

    Article  CAS  Google Scholar 

  • Pagano, G., Aliberti, F., Guida, M., Oral, R., Siciliano, A., Trifuoggi, M., & Tommasi, F. (2015). Rare earth elements in human and animal health: state of art and research priorities. Environmental Research, 142, 215–220. https://doi.org/10.1016/j.envres.2015.06.039.

    Article  CAS  Google Scholar 

  • Pagano, G., Guida, M., Trifuoggi, M., Thomas, P. J., Palumbo, A., Romano, G., & Oral, R. (2017). Sea urchin bioassays in toxicity testing: I. Inorganics, organics, complex mixtures and natural products. Expert Opinion in Environmental Biology, 6, 1. https://doi.org/10.4172/2325-9655.1000142.

    Article  Google Scholar 

  • Parizanganeh, A., Hajisoltani, P., & Zamani. (2010). Assessment of heavy metal pollution in surficial soils surrounding zinc industrial complex in Zanjan-Iran. Procedia Environmental Sciences, 2, 162–166. https://doi.org/10.1016/j.proenv.2010.10.019.

    Article  Google Scholar 

  • Pirastu, R., Iavarone, I., Pasetto, R., Zona, A., & Comba, P. (2011). SENTIERI - Studio epidemiologico nazionale dei territori e degli insediamenti esposti a rischio da inquinamento: Risultati. Epidemiologia e Prevenzione, 35(5–6 Suppl. 4), 134–138 http://www.epiprev.it/Sentieri2011_Allegati.

    Google Scholar 

  • Płaza, G. A., Nałecz-Jawecki, G., Pinyakong, O., Illmer, P., & Margesin, R. (2010). Ecotoxicological and microbiological characterization of soils from heavy-metal- and hydrocarbon-contaminated sites. Environmental Monitoring and Assessment, 163, 477–488. https://doi.org/10.1007/s10661-009-0851-7.

    Article  CAS  Google Scholar 

  • Ren, X., Zeng, G., Tang, L., Wang, J., Wan, J., Liu, Y., Yu, J., Yi, H., Ye, S., & Deng, R. (2018). Sorption, transport and biodegradation – an insight into bioavailability of persistent organic pollutants in soil. Science of the Total Environment, 610-611, 1154–1163.

    Article  CAS  Google Scholar 

  • Soleo, L., Lovreglio, P., Panuzzo, L., D'Errico, M. N., Basso, A., Gilberti, M. E., Drago, I., Tomasi, C., & Apostoli, P. (2012). Health risk assessment of exposure to metals in the workers of the steel foundry and in the general population of Taranto (Italy). Giornale Italiano di Medicina del Lavoro ed Ergonomia, 34, 381–391.

    Google Scholar 

  • US EPA. (1996) Method 3050B: acid digestion of sediments, sludges, and soils, revision 2. Washington, DC.

  • Woszczyk, M., Spychalski, W., & Boluspaeva, L. (2018). Trace metal (Cd, Cu, Pb, Zn) fractionation in urban-industrial soils of Ust-Kamenogorsk (Oskemen), Kazakhstan—Implications for the assessment of environmental quality. Environmental Monitoring and Assessment, 190(362), 362. https://doi.org/10.1007/s10661-018-6733-0.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Giovanni Pagano.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Highlights

• Topsoil and street dust samples from the Taranto (Italy) industrial area displayed different metal pollution, without relevant pollution by total hydrocarbons or PAHs.

• Highest pollution levels were found at two sites near a foundry (# TA5 and TA6), and relevant levels were also found at two sites in the Tamburi neighborhood (# TA7 and TA9).

• A set of analyzed elements (Fe, Zn, Cu, Sn, Mn, Cr, and Ni) were found as principal components in metal pollution.

• Soil samples were tested by sea urchin and nematode toxicity, showing highest toxicities for the soil samples also displaying the highest metal levels.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Trifuoggi, M., Pagano, G., Oral, R. et al. Topsoil and urban dust pollution and toxicity in Taranto (southern Italy) industrial area and in a residential district. Environ Monit Assess 191, 43 (2019). https://doi.org/10.1007/s10661-018-7164-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10661-018-7164-7

Keywords

  • Soil pollution
  • Soil toxicity
  • Steel foundry
  • Sea urchins
  • S. granularis
  • C. elegans