Skip to main content

Advertisement

Log in

Toward a combined Bayesian frameworks to quantify parameter uncertainty in a large mountainous catchment with high spatial variability

  • Published:
Environmental Monitoring and Assessment Aims and scope Submit manuscript

Abstract

Although hydrological models play an essential role in managing water resources, quantifying different sources of uncertainties is a challenging task. In this study, the application of two parameter uncertainty quantification methods and their performances for predicting runoff was investigated. Sequential Uncertainty Fitting version 2 (SUFI-2) and DiffeRential Evolution Adaptive Metropolis (DREAM-ZS) algorithms were employed to explore the output uncertainty of Soil and Water Assessment Tool (SWAT) at a multisite flow gauging station. In order to optimize the model and quantify the parameter uncertainty, S1 and S2 strategies, which belong to the SUFI-2 and DREAM-ZS algorithms, were defined. The prior ranges of the S1 were adopted from SWAT manual, and the prior ranges of the S2 were selected using a compromising approach between the prior and posterior ranges extracted from S1. P-factor, d-factor, Nash-Sutcliffe coefficient (NS), the dimensionless variant of average deviation amplitude (S), and the average relative deviation amplitude (T), as performance criteria, were assessed. The NS, S, and T for total uncertainty ranged 0.60–0.71, 0.46–0.51, and 0.94–1.01 under S1 strategy and 0.64–0.78, 0.07–0.22, and 0.39–0.64 under S2, respectively. In parameter uncertainty analysis, S and T indices ranged from 1.51 to 1.88 and 2.20 to 2.60, correspondingly. The results showed that the DREAM-ZS algorithm improved model calibration efficiency and led to more realistic values of the parameters for runoff simulation in SWAT model. However, the S2 strategy, which implicitly takes advantage of both formal and informal Bayesian approaches simultaneously, will be able to outperform the S1 for reducing the prediction uncertainties.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Abbaspour, K. C. (2011). SWAT-CUP4: SWAT calibration and uncertainty programs—a user manual. Swiss Federal Institute of Aquatic Science and Technology, Eawag.

  • Abbaspour, K. C., Johnson, C. A., & Van Genuchten, M. T. (2004). Estimating uncertain flow and transport parameters using a sequential uncertainty fitting procedure. Vadose Zone Journal, 3(4), 1340–1352.

    Article  Google Scholar 

  • Abbaspour, K. C., Yang, J., Maximov, I., Siber, R., Bogner, K., Mieleitner, J., Zobrist, J., & Srinivasan, R. (2007). Modelling hydrology and water quality in the pre-alpine/alpine Thur watershed using SWAT. Journal of Hydrology, 333(2), 413–430.

    Article  Google Scholar 

  • Afshar, A. A., & Hassanzadeh, Y. (2017). Determination of monthly hydrological Erosion severity and runoff in Torogh dam Watershed Basin using SWAT and WEPP models. Iranian Journal of Science and Technology, Transactions of Civil Engineering, 41(2), 221–228.

    Article  Google Scholar 

  • Afshar, A. A., Hasanzadeh, Y., Besalatpour, A. A., & Pourreza-Bilondi, M. (2017a). Climate change forecasting in a mountainous data scarce watershed using CMIP5 models under representative concentration pathways. Theoretical and Applied Climatology, 129(1–2), 683–699.

    Article  Google Scholar 

  • Afshar, A.A., Hassanzadeh, Y., Pourreza-Bilondi, M., & Ahmadi, A. (2017b). Analyzing long-term spatial variability of blue and green water footprints in a semi-arid mountainous basin with MIROC-ESM model (case study: Kashafrood River Basin, Iran). Theoretical and Applied Climatology, 1–15 (Published Online).

  • Arnold, J. G., Srinivasan, R., Muttiah, R. S., & Williams, J. R. (1998). Large area hydrologic modeling and assessment part I: Model development. JAWRA Journal of the American Water Resources Association, 34(1), 73–89.

    Article  CAS  Google Scholar 

  • Arnold, J. G., Kiniry, J. R., Srinivasan, R., Williams, J. R., Haney, E. B., & Neitsch, S. L. (2011). Soil and Water Assessment Tool input/output file documentation: Version 2009. College Station: Texas Water resources institute technical report, 365.

  • Beven, K. (2006). A manifesto for the equifinality thesis. Journal of Hydrology, 320(1), 18–36.

    Article  Google Scholar 

  • Beven, K., & Binley, A. (1992). The future of distributed models: Model calibration and uncertainty prediction. Hydrological Processes, 6(3), 279–298.

    Article  Google Scholar 

  • Beven, K., & Freer, J. (2001). Equifinality, data assimilation and uncertainty estimation in mechanistic modeling of complex environmental system using the GLUE methodology. Journal of Hydrology, 249(1–4), 11–29.

    Article  Google Scholar 

  • Beven, K. J., Smith, P. J., & Freer, J. E. (2008). So just why would a modeller choose to be incoherent? Journal of Hydrology, 354(1–4), 15–32.

    Article  Google Scholar 

  • Bicknell, B. R., Imhoff, J. C., Kittle Jr, J. L., Donigian Jr, A. S., & Johanson, R. C. (1996). Hydrological simulation program-FORTRAN. user's manual for release 11. US EPA.

  • Bilondi, M. P., & Abbaspour, K. C. (2013). Application of three different calibration-uncertainty analysis methods in a semi-distributed rainfall-runoff model application. Middle-East Journal of Scientific Research, 15.

  • Box, G. E. P., & Tiao, G. C. (1992). Bayesian inference in statistical analysis (p. 608). New York: Wiley Interscience.

    Book  Google Scholar 

  • Cho, J., Bosch, D., Lowrance, R., Strickland, T., & Vellidis, G. (2009). Effect of spatial distribution of rainfall on temporal and spatial uncertainty of SWAT output. Transactions of the ASABE, 52(5), 1545–1556.

    Article  Google Scholar 

  • Chow, V. T., Maidment, D. R., & Mays, L. W. (1988). Applied hydrology, 572 pp. New York: Editions McGraw-Hill.

    Google Scholar 

  • Dumont, B., Leemans, V., Mansouri, M., Bodson, B., Destain, J. P., & Destain, M. F. (2014). Parameter identification of the STICS crop model, using an accelerated formal MCMC approach. Environmental Modelling & Software, 52, 121–135.

    Article  Google Scholar 

  • Engeland, K., Steinsland, I., Johansen, S. S., Petersen-Øverleir, A., & Kolberg, S. (2016). Effects of uncertainties in hydrological modelling. A case study of a mountainous catchment in southern Norway. Journal of Hydrology, 536, 147–160.

    Article  Google Scholar 

  • Flanagan, D. C., Frankenberger, J. R., & Ascough, J. C., II. (2012). WEPP: Model use, calibration, and validation. Transactions of the ASABE, 55(4), 1463–1477.

    Article  Google Scholar 

  • Gelman, A., & Rubin, D. B. (1992). Inference from iterative simulation using multiple sequences. Statistical Science, 7, 457–472.

    Article  Google Scholar 

  • Hargreaves, G. H., & Samani, Z. A. (1985). Reference crop evapotranspiration from temperature. Applied Engineering in Agriculture, 1(2), 96–99.

    Article  Google Scholar 

  • He, J., Jones, J. W., Graham, W. D., & Dukes, M. D. (2010). Influence of likelihood function choice for estimating crop model parameters using the generalized likelihood uncertainty estimation method. Agricultural Systems, 103(5), 256–264.

    Article  Google Scholar 

  • Hernandez-Lopez, M. R., & Frances, F. (2017). Bayesian joint interface of hydrological and generalized error models with the enforcement of total laws. Hydrology and Earth System Sciences, 1–40. https://doi.org/10.5194/hess-2017-9.

  • Jin, X., Xu, C. Y., Zhang, Q., & Singh, V. P. (2010). Parameter and modeling uncertainty simulated by GLUE and a formal Bayesian method for a conceptual hydrological model. Journal of Hydrology, 383(3), 147–155.

    Article  Google Scholar 

  • Joseph, J. F., & Guillaume, J. H. (2013). Using a parallelized MCMC algorithm in R to identify appropriate likelihood functions for SWAT. Environmental Modelling & Software, 46, 292–298.

    Article  Google Scholar 

  • Koren, V., Reed, S., Smith, M., Zhang, Z., & Seo, D. J. (2004). Hydrology laboratory research modeling system (HL-RMS) of the US national weather service. Journal of Hydrology, 291(3), 297–318.

    Article  Google Scholar 

  • Kozelj, D., Kapelan, Z., Novak, G., & Steinman, F. (2014). Investigating prior parameter distributions in the inverse modelling of water distribution hydraulic models. Journal of Mechanical Engineering, 60(11), 725–734.

    Article  Google Scholar 

  • Kuczera, G., & Parent, E. (1998). Monte Carlo assessment of parameter uncertainty in conceptual catchment models: The Metropolis algorithm. Journal of Hydrology, 211(1), 69–85.

    Article  Google Scholar 

  • Kumar, N., Singh, S. K., Srivastava, P. K., & Narsimlu, B. (2017). SWAT model calibration and uncertainty analysis for streamflow prediction of the tons River Basin, India, using sequential uncertainty fitting (SUFI-2) algorithm. Modeling Earth Systems and Environment, 3(1), 1–13.

    Article  CAS  Google Scholar 

  • Laloy, E., & Vrugt, J. A. (2012). High-dimensional posterior exploration of hydrologic models using multiple-try DREAM (ZS) and high-performance computing. Water Resources Research, 48(1).

  • Laloy, E., Fasbender, D., & Bielders, C. L. (2010). Parameter optimization and uncertainty analysis for plot-scale continuous modeling of runoff using a formal Bayesian approach. Journal of Hydrology, 380(1–2), 82–93.

    Article  Google Scholar 

  • Leta, O. T., Nossent, J., Velez, C., Shrestha, N. K., van Griensven, A., & Bauwens, W. (2015). Assessment of the different sources of uncertainty in a SWAT model of the river Senne (Belgium). Environmental Modelling & Software, 68, 129–146.

    Article  Google Scholar 

  • Leta, O. T., van Griensven, A., & Bauwens, W. (2016). Effect of single and multisite calibration techniques on the parameter estimation, performance, and output of a SWAT model of a spatially heterogeneous catchment. Journal of Hydrologic Engineering, 22(3), 05016036.

    Article  Google Scholar 

  • Li, X., Weller, D. E., & Jordan, T. E. (2010). Watershed model calibration using multi-objective optimization and multi-site averaging. Journal of Hydrology, 380(3–4), 277–288.

    Article  CAS  Google Scholar 

  • Li, B., Liang, Z., He, Y., Hu, L., Zhao, W., & Acharya, K. (2017). Comparison of parameter uncertainty analysis techniques for a TOPMODEL application. Stochastic Environmental Research and Risk Assessment, 31(5), 1045–1059.

    Article  Google Scholar 

  • Lin, B., Chen, X., Yao, H., Chen, Y., Liu, M., Gao, L., & James, A. (2015). Analyses of landuse change impacts on catchment runoff using different time indicators based on SWAT model. Ecological Indicators, 58, 55–63.

    Article  Google Scholar 

  • Mantovan, P., & Todini, E. (2006). Hydrological forecasting uncertainty assessment: Incoherence of the GLUE methodology. Journal of Hydrology, 330(1), 368–381.

    Article  Google Scholar 

  • Marhaento, H., Booij, M. J., Rientjes, T. H. M., & Hoekstra, A. Y. (2017). Attribution of changes in the water balance of a tropical catchment to land use change using the SWAT model. Hydrological Processes, 31(11), 2029–2040.

    Article  Google Scholar 

  • Memarian, H., Balasundram, S. K., Abbaspour, K. C., Talib, J. B., Boon Sung, C. T., & Sood, A. M. (2014). SWAT-based hydrological modelling of tropical land-use scenarios. Hydrological Sciences Journal, 59(10), 1808–1829.

    Article  Google Scholar 

  • Moriasi, D. N., Arnold, J. G., Van Liew, M. W., Bingner, R. L., Harmel, R. D., & Veith, T. L. (2007). Model evaluation guidelines for systematic quantification of accuracy in watershed simulations. Transactions of the ASABE, 50(3), 885–900.

    Article  Google Scholar 

  • Narsimlu, B., Gosain, A. K., Chahar, B. R., Singh, S. K., & Srivastava, P. K. (2015). SWAT model calibration and uncertainty analysis for streamflow prediction in the Kunwari River basin, India, using sequential uncertainty fitting. Environmental Processes, 2(1), 79–95.

    Article  CAS  Google Scholar 

  • Nash, J. E., & Sutcliffe, J. V. (1970). River flow forecasting through conceptual models part I—A discussion of principles. Journal of Hydrology, 10(3), 282–290.

    Article  Google Scholar 

  • Neitsch, S. L., Arnold, J. G., Kiniry, J. R., & Williams, J. R. (2011). Soil and water assessment tool theoretical documentation version 2009. Texas Water Resources Institute.

    Google Scholar 

  • Nossent, J., & Bauwens, W. (2012). Multi-variable sensitivity and identifiability analysis for a complex environmental model in view of integrated water quantity and water quality modeling. Water Science and Technology, 65(3), 539–549.

    Article  CAS  Google Scholar 

  • Nourali, M., Ghahraman, B., Pourreza-Bilondi, M., & Davary, K. (2016). Effect of formal and informal likelihood functions on uncertainty assessment in a single event rainfall-runoff model. Journal of Hydrology, 540, 549–564.

    Article  Google Scholar 

  • Parajuli, P. B., Jayakody, P., & Ouyang, Y. (2018). Evaluation of using remote sensing evapotranspiration data in SWAT. Water Resources Management, 32(3), 985–996.

    Article  Google Scholar 

  • Pourreza-Bilondi, M., Samadi, S. Z., Akhoond-Ali, A. M., & Ghahraman, B. (2016). Reliability of semiarid flash flood modeling using Bayesian framework. Journal of Hydrologic Engineering, 22(4), 05016039.

    Article  Google Scholar 

  • Rivera, D., Rivas, Y., & Godoy, A. (2015). Uncertainty in a monthly water balance model using the generalized likelihood uncertainty estimation methodology. Journal of Earth System Science, 124(1), 49–59.

    Article  Google Scholar 

  • Rostamian, R., Jaleh, A., Afyuni, M., Mousavi, S. F., Heidarpour, M., Jalalian, A., & Abbaspour, K. C. (2008). Application of a SWAT model for estimating runoff and sediment in two mountainous basins in Central Iran. Hydrological Sciences Journal, 53(5), 977–988.

    Article  Google Scholar 

  • Sayari, N., Bannayan, M., Alizadeh, A., & Farid, A. (2013). Using drought indices to assess climate change impacts on drought conditions in the northeast of Iran (case study: Kashafrood basin). Meteorological Applications, 20(1), 115–127.

    Article  Google Scholar 

  • Schoups, G., & Vrugt, J. A. (2010). A formal likelihood function for parameter and predictive inference of hydrologic models with correlated, heteroscedastic, and non-Gaussian errors. Water Resources Research, 46(10).

  • Setegn, S. G., Srinivasan, R., Melesse, A. M., & Dargahi, B. (2010). SWAT model application and prediction uncertainty analysis in the Lake Tana Basin, Ethiopia. Hydrological Processes, 24(3), 357–367.

    Google Scholar 

  • Shi, X., Ye, M., Curtis, G. P., Miller, G. L., Meyer, P. D., Kohler, M., Yabusaki, S., & Wu, J. (2014). Assessment of parametric uncertainty for groundwater reactive transport modeling. Water Resources Research, 50(5), 4416–4439.

    Article  Google Scholar 

  • Singh, V., Bankar, N., Salunkhe, S. S., Bera, A. K., & Sharma, J. R. (2013). Hydrological stream flow modelling on Tungabhadra catchment: Parameterization and uncertainty analysis using SWAT CUP. Current Science, 104(9), 1187–1199.

    Google Scholar 

  • Srivastava, P. K., Han, D., Ramirez, M. R., & Islam, T. (2013). Machine learning techniques for downscaling SMOS satellite soil moisture using MODIS land surface temperature for hydrological application. Water Resources Management, 27(8), 3127–3144.

    Article  Google Scholar 

  • Surfleet, C. G., & Tullos, D. (2013). Uncertainty in hydrologic modelling for estimating hydrologic response due to climate change (Santiam River, Oregon). Hydrological Processes, 27(25), 3560–3576.

    Article  Google Scholar 

  • Ter Braak, C. J. (2006). A Markov chain Monte Carlo version of the genetic algorithm differential evolution: Easy Bayesian computing for real parameter spaces. Statistics and Computing, 16(3), 239–249.

    Article  Google Scholar 

  • Ter Braak, C. J., & Vrugt, J. A. (2008). Differential evolution Markov chain with snooker updater and fewer chains. Statistics and Computing, 18(4), 435–446.

    Article  Google Scholar 

  • USDA-SCS. (1986). US Department of Agriculture-soil Conservation Service (USDASCS): Urban hydrology for small watersheds. Washington, DC: USDA.

    Google Scholar 

  • Van Griensven, A., & Meixner, T. (2006). Methods to quantify and identify the sources of uncertainty for river basin water quality models. Water Science and Technology, 53(1), 51–59.

    Article  Google Scholar 

  • Van Griensven, A., Meixner, T., Grunwald, S., Bishop, T., Diluzio, M., & Srinivasan, R. (2006). A global sensitivity analysis tool for the parameters of multi-variable catchment models. Journal of Hydrology, 324(1), 10–23.

    Article  Google Scholar 

  • Vrugt, J. A., Gupta, H. V., Bouten, W., & Sorooshian, S. (2003). A shuffled complex evolution Metropolis algorithm for optimization and uncertainty assessment of hydrologic model parameters. Water Resources Research, 39(8).

  • Vrugt, J. A., Ter Braak, C. J., Clark, M. P., Hyman, J. M., & Robinson, B. A. (2008). Treatment of input uncertainty in hydrologic modeling: Doing hydrology backward with Markov chain Monte Carlo simulation. Water Resources Research, 44(12).

  • Vrugt, J. A., Ter Braak, C. J. F., Diks, C. G. H., Robinson, B. A., Hyman, J. M., & Higdon, D. (2009a). Accelerating Markov chain Monte Carlo simulation by differential evolution with self-adaptive randomized subspace sampling. International Journal of Nonlinear Sciences and Numerical Simulation, 10(3), 273–290.

    Article  Google Scholar 

  • Vrugt, J. A., Ter Braak, C. J., Gupta, H. V., & Robinson, B. A. (2009b). Equifinality of formal (DREAM) and informal (GLUE) Bayesian approaches in hydrologic modeling? Stochastic Environmental Research and Risk Assessment, 23(7), 1011–1026.

    Article  Google Scholar 

  • Vrugt, J. A., Ter Braak, C. J., Diks, C. G., & Schoups, G. (2013). Hydrologic data assimilation using particle Markov chain Monte Carlo simulation: Theory, concepts and applications. Advances in Water Resources, 51, 457–478.

    Article  Google Scholar 

  • Wang, X., Williams, J. R., Gassman, P. W., Baffaut, C., Izaurralde, R. C., Jeong, J., & Kiniry, J. R. (2012). EPIC and APEX: Model use, calibration, and validation. Transactions of the ASABE, 55(4), 1447–1462.

    Article  Google Scholar 

  • Wu, H., & Chen, B. (2015). Evaluating uncertainty estimates in distributed hydrological modeling for the Wenjing River watershed in China by GLUE, SUFI-2, and ParaSol methods. Ecological Engineering, 76, 110–121.

    Article  Google Scholar 

  • Xiong, L., Wan, M., Wei, X., & O'connor, K. M. (2009). Indices for assessing the prediction bounds of hydrological models and application by generalised likelihood uncertainty estimation. Hydrological Sciences Journal, 54(5), 852–871.

    Article  Google Scholar 

  • Xu, T., Valocchi, A. J., Ye, M., Liang, F., & Lin, Y. F. (2017). Bayesian calibration of groundwater models with input data uncertainty. Water Resources Research, 53(4), 3224–3245.

    Article  Google Scholar 

  • Yang, J., Reichert, P., Abbaspour, K. C., Xia, J., & Yang, H. (2008). Comparing uncertainty analysis techniques for a SWAT application to the Chaohe Basin in China. Journal of Hydrology, 358(1), 1–23.

    Article  Google Scholar 

  • Zahmatkesh, Z., Karamouz, M., & Nazif, S. (2015). Uncertainty based modeling of rainfall-runoff: Combined differential evolution adaptive metropolis (DREAM) and K-means clustering. Advances in Water Resources, 83, 405–420.

    Article  Google Scholar 

  • Zeng, X., Ye, M., Wu, J., Wang, D., & Zhu, X. (2018). Improved nested sampling and surrogate-enabled comparison with other marginal likelihood estimators. Water Resources Research, 54, 797–826. https://doi.org/10.1002/2017WR020782.

    Article  Google Scholar 

  • Zhang, J., Li, Q., Guo, B., & Gong, H. (2015). The comparative study of multi-site uncertainty evaluation method based on SWAT model. Hydrological Processes, 29(13), 2994–3009.

    Article  Google Scholar 

Download references

Funding

Financial support was provided by Iran National Science Foundation (INSF). The corresponding contract number is 96005746.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Amirhosein Aghakhani Afshar.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This paper highlights the following aspects:

1. The correlation matrix between parameters in DREAM-ZS was significantly better than SUFI-2.

2. The performance of DREAM-ZS algorithm to predict simultaneous parameter uncertainty was better than SUFI-2 algorithm.

3. The results of S and T indicators at multi-site in DREAM-ZS were better than the SUFI-2 for reducing the prediction uncertainties.

4. Most of the measured data in DREAM-ZS fell inside the 95PPU and were larger than SUFI-2 algorithm.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hassanzadeh, Y., Afshar, A.A., Pourreza-Bilondi, M. et al. Toward a combined Bayesian frameworks to quantify parameter uncertainty in a large mountainous catchment with high spatial variability. Environ Monit Assess 191, 23 (2019). https://doi.org/10.1007/s10661-018-7145-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10661-018-7145-x

Keywords

Navigation