Skip to main content
Log in

Environmental impact assessment studies for mining area in Goa, India, using the new approach

  • Published:
Environmental Monitoring and Assessment Aims and scope Submit manuscript

Abstract

The mining industry is a fundamental source for building infrastructures and an enabler for a country’s growth. Over the last decade, the act of mining has been among the top in the list of human activities which has the most disturbing and catastrophic impacts on environment, therein extensively affecting the ecological, economic, and social elements in the vicinity. There is an exigency for a pragmatic balance to exist between the global demand satisfaction of metal and environmental sustenance. In this paper, a comprehensive case study on Environmental Impact Assessment (EIA) of a mining site has been presented using the new approach. This new approach is an improved version of the traditional matrix method, incorporating a modified version of Rapid Impact Assessment Matrix (RIAM) integrated with analytical hierarchy process (AHP), thereby knocking out the limitations in the existing EIA techniques. The data used in this study is an outcome of a broad survey conducted among the people associated in both direct and indirect ways to the project actions related to the mining industry and, hence, minimizing issues such as assessors’ reproducibility, subjectivity, and non-inclusivity of all stakeholders’ opinion, which can contribute to misleading outcomes. This new approach delivers more precise and practical results for the assessment of environmental impact data.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Abbreviations

EIA:

Environmental Impact Assessment

AHP:

Analytical hierarchy process

RIAM:

Rapid Impact Assessment Matrix Method

RI:

Random index

CI:

Consistency index

CR:

Consistency ratio

ES:

Environmental scores

A ij :

ith row element in jth column of matrix A

\( \sum \limits_{j=1}^n{A}_{\mathrm{ij}} \) :

Ai1 + Ai2 +…...+ Ai(n − 1) + Ain

References

  • Alonso, J. A., & Lamata, T. M. (2006). Consistency in the analytic hierarchy process: A new approach. International Journal of Uncertainty, Fuzziness and Knowledge-Based Systems, 14(4), 445–459.

    Article  Google Scholar 

  • Bindu, N.L. (1997). Environmental impact assessment: For developing countries in Asia, Volume 1. Chapter – 3: Methodologies for EIA. Section 3.1, 3.2, 3.5 and 3.8. Publisher Asian Development Bank.

  • Branch, A. (2011). Application of fuzzy logic in environmental impact assessment modeling of a man-made Lake in Western Tehran (Iran ). 6, 152–155.

  • Campos, D. S., & De Mello, R. (2006). A decision support method for environmental impact assessment using a fuzzy logic approach. Analysis, 58, 170–181. https://doi.org/10.1016/j.ecolecon.2005.06.007.

    Article  Google Scholar 

  • Carvalho, F.P. (2017). Mining industry and sustainable development: Time for change’, (Reardon 2011), pp 61–77. https://doi.org/10.1002/fes3.109.

  • Connolly, E., Orsmond, D. (2011). The mining industry: From bust to boom. Research discussion paper. https://www.rba.gov.au/publications/rdp/2011/pdf/rdp2011-08.pdf. Accessed 15 Jan 2018.

  • Dubiński, J. (2005). New safety technologies in underground mines. Proc. of the 20th World Mining Congress – Mining and. Sustainable Development, 1, Teheran, 21–31.

    Google Scholar 

  • Faramarzi, V., & Soffianian, A. (2014). Environmental impact assessment using fuzzy logic inference model case study: Kamal Saleh Dam. Journal of Environmental Studies, 40(4), 973–988. https://doi.org/10.22059/jes.2014.53013.

    Article  Google Scholar 

  • Gour, M. (2017). Advanced environmental engineering blogpost – Methods of EIA. http://mjcetce455.blogspot.com/2017/04/methods-of-eia.html. Accessed 22 Jan 2018.

  • Hudson-Edwards, K. A., Jamieson, H. E., & Lottermoser, B. G. (2011). Mine wastes: Past, present, future. Elements, 7, 375–380.

    Article  Google Scholar 

  • Hughes, D. J., Shimmield, T. M., Black, K. D., Howe, J. A., et al. (2015). Ecological impacts of large-scale disposal of mining waste in the deep sea. Scientific Reports. Nature Publishing Group, 5, 1–11. https://doi.org/10.1038/srep09985.

    Article  CAS  Google Scholar 

  • India WRIS - Maps of Goa. Website - http://www.india-wris.nrsc.gov.in/wrpinfo/index.php?title=Goa. Accessed 4 December 2018.

  • Li, J.C. (2008). Environmental impact assessments in developing countries: An opportunity for greater environmental security?. Working Paper No. 4, United States Agency for International Development (USAID) and Foundation of Environmental Security and Sustainability (FESS).

  • Mining Association of Canada (2004) Towards Sustainable Mining. Website - http://mining.ca/towardssustainable-mining. Accessed 4 December 2018.

  • Mofarrah, Abdullah & Husain, T. (2010). Methodology for environmental impact assessment: A fuzzy logic based approach. Proceedings of the 2nd IASTED International Conference on Environmental Management and Engineering, EME 2010. https://doi.org/10.2316/P.2010.699-015.

  • Pastakia, C. M. R. (1998). The rapid impact assessment matrix (RIAM)—A new tool for environmental impact assessment. In K. Jensen (Ed.), Environmental Impact Assessment Using the Rapid Impact Assessment Matrix (RIAM). Fredensborg: Olsen & Olsen.

    Google Scholar 

  • Peche, R., & Rodríguez, E. (2009). Environmental impact assessment procedure : A new approach based on fuzzy logic. Environmental Impact Assessment Review. Elsevier Inc., 29(5), 275–283. https://doi.org/10.1016/j.eiar.2009.01.005.

    Article  Google Scholar 

  • Ramanathan, R. (2001). A note on the use of the analytic hierarchy process for environmental impact assessment. Journal of Environmental Management, 63, 27–35.

    Article  CAS  Google Scholar 

  • Richards, J.P. (2002). Sustainable development and the minerals industry, society of economic geologists newsletter, U.S.A, January.

  • Saaty, T. L. (1980). The analytic hierarchy process: Planning, priority setting and resource allocation. New York: McGraw-Hill.

    Google Scholar 

  • Saaty, T. L. (2000). Fundamentals of decision making and priority theory with the analytic hierarchy process. Pittsburg: RWS Publications.

    Google Scholar 

  • Sahu, H. B., Prakash, N., & Jayanthu, S. (2015). Underground mining for meeting environmental concerns – A strategic approach for sustainable mining in future. Procedia Earth and Planetary Science. Elsevier B.V., 11, 232–241. https://doi.org/10.1016/j.proeps.2015.06.030.

    Article  Google Scholar 

  • Sánchez, L. E., & Hacking, T. (2002). An approach to linking environmental impact assessment and environmental management systems. Impact Assessment and Project Appraisal, 20(1), 25–38. https://doi.org/10.3152/147154602781766843.

    Article  Google Scholar 

  • Xavier, L.P., Miriam, P.C., Mireia, P.C., Eloi, P.R., & Clara, S. C. (2013). Iron mining in Goa, India. An interdisciplinary study. https://www.recercat.cat/bitstream/handle/2072/223218/PFC_IronMiningGoa.pdf?sequence=1. Accessed 13 Feb 2018.

  • Yakovleva, N. (2015). What is the impact of the commodities crunch on mining? World Economic Forum. https://www.weforum.org/agenda/2015/12/what-is-the-impact-of-the-commodities-crunch-on-mining/. Accessed 24 Feb 2018.

  • Yellishetty, M., Mudd, G. M., & Richa, S. (2013). Prediction of soil erosion from waste dumps of opencast mines and evaluation of their impacts on the environment. International Journal of Mining, Reclamation and Environment, 27(2), 88–102.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We like to thank Birla Institute of Technology and Science Pilani, Goa, for supporting this project. We are also thankful to the Goa State Pollution Control Board, the mining company officials, and the local people living in the vicinity of the mines who contributed to the objectivity and efficiency of this new methodology. Last but not the least, we would like to extend our gratitude towards all the environmental experts who greatly contributed in analyzing and quantifying the final results in a very constructive manner.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sampatrao D. Manjare.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sarupria, M., Manjare, S.D. & Girap, M. Environmental impact assessment studies for mining area in Goa, India, using the new approach. Environ Monit Assess 191, 18 (2019). https://doi.org/10.1007/s10661-018-7135-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10661-018-7135-z

Keywords

Navigation