Skip to main content

Advertisement

Log in

Comparison of the sustainability of bean production systems based on emergy and economic analyses

  • Published:
Environmental Monitoring and Assessment Aims and scope Submit manuscript

Abstract

To address increasing demand, bean producers have intensified agricultural activities by increasing application of industrial inputs. Such intensification can impose environmental risks to vulnerable ecosystems. Emergy and economic analyses were utilized in this study to investigate and compare the environmental performance of five management patterns specified by differing degrees of intensification, i.e., ecologic, integrated, low-, medium-, and high-input production systems at Bean Research Station in Khorram Dasht, Iran. The total emergy supporting these systems was estimated to be 6.52E + 15, 1.22E + 16, 6.62E + 15, 1.10E + 16, and 1.54E + 16 sej ha−1 for the ecologic, integrated, low-, medium-, and high-input systems, respectively. The purchased emergy inputs accounted for the largest portion of the total emergy inputs to these systems and ranged between 60.84 and 75.80%. The renewable fractions, transformities, emergy yield ratios, environmental loading ratios, emergy sustainability indices, and the economic output to input ratios demonstrate that the ecologic and low-input systems performed well compared to the three more industrial systems when considering their environmental sustainability. However, the more industrial systems had comparatively higher economic output. Generally, the results illustrate that sustainable bean production will depend on the transition from fossil fuel-intensive systems to more natural resource-intensive ones. To achieve more sustainable systems, applying conservation tillage and replacing chemical fertilizer with organic fertilizer are advocated for use in bean production systems. Joint use of emergy and economic evaluation provided different but complementary standpoints for comparison of the five bean production systems examined, and can assist in solving the problems that may occur in decision-making.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  • Akibode, S., & Maredia, M. K. (2012). Global and regional trends in production, trade and consumption of food legume crops. Department of Agricultural, Food, and Resource Economics, Michigan State University.

  • Asgharipour, M. R., Mondani, F., & Riahinia, S. (2012). Energy use efficiency and economic analysis of sugar beet production system in Iran: a case study in Khorasan Razavi province. Energy, 44, 1078–1084.

    Article  Google Scholar 

  • Bastianoni, S., Marchettini, N., Panzieri, M., & Tiezzi, E. (2001). Sustainability assessment of a farm in the chianti area (Italy). Journal of Cleaner Production, 9, 365–373.

    Article  Google Scholar 

  • Bastianoni, S., Campbell, D. E., Ridolfi, R., & Pulselli, F. M. (2009). The solar transformity of petroleum fuels. Ecological Modelling, 220, 40–50.

    Article  CAS  Google Scholar 

  • Brandt-Williams, S. L. (2002). Handbook of emergy evaluation. Folio #4. Emergy of Florida Agriculture. Gainesville: Center for Environmental Policy, Environmental Engineering Sciences, University of Florida 40 p.

    Google Scholar 

  • Brown, M. T., & Ulgiati, S. (1998). Emergy evaluation of the environment: quantitative perspectives on ecological footprints. In S. Ulgiati, M. T. Brown, M. Giampietro, R. A. Herendeen, & K. Mayumi (Eds.), Advances in energy studies (pp. 223–240). Roma: Energy Flows in Ecology and Economy. MUSIS.

    Google Scholar 

  • Brown, M. T., & Ulgiati, S. (2004). Energy quality, emergy, and transformity: H.T. FV’s contributions to quantifying and understanding systems. Ecological Modelling, 178, 201–213.

    Article  Google Scholar 

  • Brown, M. T., Brandt-Williams, S., Tilley, D., & Ulgiati, S. (2000). Emergy synthesis: an introduction. In M. T. Brown (Ed.), Emergy synthesis: theory and applications of the emergy methodology, Proceedings from the First Biennial Emergy Analysis Research Conference (pp. 1–14). Gainesville: Centre for Environmental Policy.

    Google Scholar 

  • Brown, M. T., Campbell, D. E., De Vilbiss, C., & Ulgiati, S. (2016). The geobiosphere emergy baseline: a synthesis. Ecological Modelling, 339, 92–95.

    Article  Google Scholar 

  • Campbell, D. E., & Erban, L. E. (2017). A reexamination of the emergy input to a system from the wind. In M. T. Brown, S. Sweeney, D. E. Campbell, S. Huang, T. Rydberg, & S. Ulgiati (Eds.), Emergy synthesis 9: THEORY and applications of the emergy methodology (Proceedings of the 9th biennial Emergy conference) (pp. 13–20). Gainesville: Center for environmental policy, University of Florida.

    Google Scholar 

  • Campbell, D. E., & Garmestani, A. S. (2012). An energy systems view of sustainability: emergy evaluation of the San Luis Basin, Colorado. Journal of Environmental Management, 95, 72–97.

    Article  Google Scholar 

  • Campbell, C., & Laherrere, J. (1998). The end of cheap oil. Scientific American, 278(3), 78–83.

  • Campbell, D. E., Brandt-Williams, S. L., & Meisch, M. E. A. (2005). Environmental accounting using emergy: evaluation of the state of West Virginia. EPA/600/R-02/011. USEPA (p. 116). Washington, DC: Office of Research and Development.

    Google Scholar 

  • Campbell, D. E., Lu, H. F., Knox, G. A., & Odum, H. T. (2009). Maximizing empower on a human-dominated planet: the role of exotic Spartina. Ecological Engineering, 35, 463–486.

    Article  Google Scholar 

  • Cavalett, O., Queiroz, J. F., & Ortega, E. (2006). Emergy assessment of integrated production systems of grains, pig and fish in small farms in the South Brazil. Ecological Modelling, 193, 205–224.

    Article  Google Scholar 

  • Chen, F. (2011). Agricultural ecology (second ed.). Beijing: China Agricultural University Press.

    Google Scholar 

  • Chen, G. Q., & Chen, B. (2009). Extended-exergy analysis of the Chinese society. Energy, 34, 1127–1144.

    Article  Google Scholar 

  • Cheng, H., Chen, C., Wu, S., Mirza, Z. A., & Liu, Z. (2017). Emergy evaluation of cropping, poultry rearing, and fish raising systems in the drawdown zone of three gorges reservoir of China. Journal of Cleaner Production, 144, 559–571.

    Article  Google Scholar 

  • Cohen, M. J., Brown, M. T., & Shepherd, K. D. (2006). Estimating the environmental costs of soil erosion at multiple scales in Kenya using emergy synthesis. Agriculture, Ecosystems and Environment, 114(2–4), 249–269.

    Article  Google Scholar 

  • Cuadra, M., & Rydberg, T. (2006). Emergy evaluation on the production, processing and export of coffee in Nicaragua. Ecological Modelling, 196, 421–433.

    Article  Google Scholar 

  • de Barros, J. M., Blazy, G. S., Rodrigues, R., & Tournebize, J. P. (2009). Emergy evaluation and economic performance of banana cropping systems in Guadeloupe (French West Indies). Agriculture, Ecosystems and Environment, 129, 437–449.

    Article  Google Scholar 

  • Foley, J. A., Ramankutty, N., Brauman, K. A., Cassidy, E. S., Gerber, J. S., Johnston, M., Mueller, N. D., O’Connell, C., Ray, D. K., West, P. C., & Balzer, C. (2011). Solutions for a cultivated planet. Nature, 478, 337–342.

    Article  CAS  Google Scholar 

  • Food and Agriculture Organization (2017) FAOSTAT 2016: FAO Statistical Databases [CD ROM]. Rome: FAO.

  • Giannetti, B. F., Ogura, Y., Bonilla, S. H., & Almeida, C. M. V. B. (2011). Emergy assessment of a coffee farm in Brazilian Cerrado considering in a broad form the environmental services, negative externalities and fair price. Agricultural Systems, 104, 679–688.

    Article  Google Scholar 

  • Hillocks, R. J., Madata, C. S., Chirwa, R., Minja, E. M., & Msolla, S. (2006). Phaseolus bean improvement in Tanzania, 1959–2005. Euphytica, 150(1-2), 215–231.

  • Hole, D. G., Perkins, A. J., Wilson, J. D., Alexander, I. H., Grice, P. V., & Evans, A. D. (2005). Does organic farming benefit biodiversity? Biological Conservation, 122, 113–130.

    Article  Google Scholar 

  • Hu, S., Mo, X. G., Lin, Z. G., & Qiu, J. X. (2010). Emergy assessment of a wheat-maize rotation system with different water assignments in the North China plain. Environmental Management, 46, 643–657.

    Article  Google Scholar 

  • Ipsos, R. (2010). Factors influencing pulse consumption in Canada. Summary Report. Calgary: Alberta Agriculture and Rural Development, Government of Alberta.

  • Iran Statistical Yearbook 1394 (Iranian Year) [2015-2016]. (2017). Publisher: Statistical Centre of Iran.

  • ISO 1928 (1995). Solid mineral fuels. Determination of gross calorific value by the bomb calorimetric method, and calculation of net calorific value. Geneva: International Organization for Standardization.

  • Jafari, M., Asgharipour, M. R., Ramroudi, M., Galavi, M., & Hadarbadi, G. (2018). Sustainability assessment of date and pistachio agricultural systems using energy, emergy and economic approaches. Journal of Cleaner Production, 193, 642–651.

    Article  Google Scholar 

  • Jones, A. L. (1999). Phaseolus bean: Post-harvest operations. Post-harvest compendium. Rome: Food and Agriculture Organization of the United Nations.

  • Khoshnevisan, B., Rafiee, S., Omid, M., Yousefi, M., & Movahedi, M. (2013). Modeling of energy consumption and GHG (greenhouse gas) emissions in wheat production in Esfahan province of Iran using artificial neural networks. Energy, 52, 333–338.

    Article  Google Scholar 

  • Kohkan, S. A., Ghanbari, A., Asgharipour, M. R., & Fakheri, B. (2017). Emergy evaluation of Yaghuti grape of Sistan. Arid Biome Scientific and Research Journal, 7, 73–84.

    Article  Google Scholar 

  • La Rosa, A. D., Siracusa, G., & Cavallaro, R. (2008). Emergy evaluation of Sicilian red orange production. A comparison between organic and conventional farming. Journal of Cleaner Production, 16, 1907–1914.

    Article  Google Scholar 

  • Lan, S. F., Qin, P., & Lu, H. F. (2002). Emergy assessment of ecological systems (Vol. 75 and 76, pp. 406–412). Beijing: Chemical industry press.

    Google Scholar 

  • Li, L., Lu, H., Ren, H., Kang, W., & Chen, F. (2011). Emergy evaluations of three aquaculture systems on wetlands surrounding the Pearl River estuary, China. Ecological Indicators, 11, 526–534.

    Article  Google Scholar 

  • Lu, H. F., & Campbell, D. E. (2009). Ecological and economic dynamics of the Shunde agricultural system under China’s small city development strategy. Journal of Environmental Management, 90, 2589–2600.

    Article  Google Scholar 

  • Lu, H. F., Kang, W. L., Campbell, D. E., Rena, H., Tand, Y. W., Fengd, R. X., Luod, J. T., & Chenb, F. P. (2009). Emergy and economic evaluations of four fruit production systems on reclaimed wetlands surrounding the Pearl River estuary, China. Ecological Engineering, 35, 1743–1757.

    Article  Google Scholar 

  • Lu, H. F., Bai, Y., Ren, H., & Campbell, D. E. (2010). Integrated emergy, energy and economic evaluation of rice and vegetable production systems in alluvial paddy fields: implications for agricultural policy in China. Journal of Environmental Management, 91, 2727–2735.

    Article  Google Scholar 

  • Lu, H. F., Yuan, Y., Campbell, D. E., Qin, P., & Cui, L. (2014). Integrated water quality, emergy and economic evaluation of three bioremediation treatment systems for eutrophic water. Ecological Engineering, 69, 244–254.

    Article  Google Scholar 

  • Lu, H. F., Tan, Y. W., Zhang, W. S., Qiao, Y. C., Campbell, D. E., Zhou, L., & Ren, H. (2017). Integrated emergy and economic evaluation of lotus-root production systems on reclaimed wetlands surrounding the Pearl River estuary, China. Journal of Cleaner Production, 158, 367–379.

    Article  Google Scholar 

  • Lu, H. F., Cai, C. J., Zeng, X. S., Campbell, D. E., Fan, S. H., & Liu, G. L. (2018). Bamboo vs. crops: an integrated emergy and economic evaluation of using bamboo to replace crops in South Sichuan Province, China. Journal of Cleaner Production, 177, 464–473.

    Article  Google Scholar 

  • Martin, J. F., Diemont, S. A. W., Powell, E., Stanton, M., & Levy-Tacher, S. (2006). Emergy evaluation of the performance and sustainability of three agricultural systems with different scales and management. Agriculture, Ecosystems and Environment, 115, 128–140.

    Article  Google Scholar 

  • Milà i Canals, L., Burnip, G. M., & Cowell, S. J. (2006). Evaluation of the environmental impacts of apple production using life cycle assessment (LCA): case study in New Zealand. Agriculture, Ecosystems and Environment, 114, 226–238.

    Article  Google Scholar 

  • Murphy, J. D., & Power, N. M. (2008). How can we improve the energy balance of ethanol production from wheat? Fuel, 87, 1799–1806.

    Article  CAS  Google Scholar 

  • Nemecek, T., von Richthofen, J. S., Dubois, G., Casta, P., Charles, R., & Pahl, H. (2008). Environmental impacts of introducing grain legumes into European crop rotations. European Journal of Agronomy, 28, 380–393.

    Article  Google Scholar 

  • Odum, H. T. (1986). Emergy in ecosystems. In N. Polunin (Ed.), Ecosystem theory and application (pp. 142–194). New York: Wiley.

    Google Scholar 

  • Odum, H. T. (1994). Ecological and general systems, an introduction to systems ecology. Niwot: University of Colorado Press 644 p. revised edition of systems ecology, An introduction. 1983. Wiley, New York, 644 p.

    Google Scholar 

  • Odum, H. T. (1996). Environmental accounting: emergy and environmental decision making. New York: Wiley.

    Google Scholar 

  • Odum, H. T. (2000). Handbook of emergy evaluation. A compendium of data for emergy computation. Folio #2 Emergy global processes. Gainesville: Center of Environmental Policy, University of Florida.

    Google Scholar 

  • Odum, H. T., Brown, M. T., & Brand-Williams, S. L. (2000). Handbook of emergy evaluation: folio #1: introduction and global budget. Gainesville: Center for Environmental Policy, University of Florida.

    Google Scholar 

  • Ortega, E., Anami, M., & Diniz, G. (2002). Certification of food products using emergy analysis. In: Proceedings of III International Workshop Advances in Energy Studies. pp. 227–237.

  • Panzieri, M., Marchettini, N., & Hallam, T. G. (2000). Importance of the Bradhyrizobium japonicum symbiosis for the sustainability of a soybean cultivation. Ecological Modelling, 135, 301–310.

    Article  Google Scholar 

  • Prager, K. & Posthumus, H. (2010). Socio-economic factors influencing farmers’ adoption of soil conservation practices in Europe. In T. L. Napier (Ed.), Human Dimensions of Soil and Water Conservation (p. 2014). Napier: TL Nova Science Publishers. Last Accessed 9.

  • Rótolo, G. C., Francis, C., Craviotto, R. M., & Ulgiati, S. (2015). Environmental assessment of maize production alternatives: traditional, intensive and GMO-based cropping patterns. Ecological Indicators, 57, 48–60.

    Article  Google Scholar 

  • Rydberg, T., & Haden, A. C. (2006). Emergy evaluations of Denmark and Danish agriculture: assessing the influence of changing resource availability on the organization of agriculture and society. Agriculture, Ecosystems and Environment, 117, 145–158.

    Article  Google Scholar 

  • Shahgholi H (2017) Evaluating and monitoring the sustainability of bean production systems using of emergy, energy and agronomic analysis. University of Zabol. Department of Agronomy. PhD thesis.

  • Singh, U., & Singh, B. (1992). Tropical grain legumes as important human food. Economic Botany, 46, 310–321.

    Article  Google Scholar 

  • Singh, R. J., Ghosh, B. N., Sharma, N. K., Patra, S., Dadhwal, K. S., & Mishra, P. K. (2016). Energy budgeting and emergy synthesis of rainfed maize–wheat rotation system with different soil amendment applications. Ecological Indicators, 61, 753–765.

    Article  CAS  Google Scholar 

  • Sun, W., & Huang, Y. (2012). Synthetic fertilizer management for China’s cereal crops has reduced N2O emissions since the early 2000s. Environmental Pollution, 160, 24–27.

    Article  CAS  Google Scholar 

  • Ting, Y. I., & Ping-an, X. I. A. N. G. (2016). Emergy analysis of paddy farming in Hunan Province, China: a new perspective on sustainable development of agriculture. Journal of Integrative Agriculture, 10, 2426–2436.

    Google Scholar 

  • Ulgiati, S., & Brown, M. T. (1998). Monitoring patterns of sustainability in natural and man-made ecosystems. Ecological Modelling, 108, 23–36.

    Article  Google Scholar 

  • Ulgiati, S., Odum, H., & Bastianoni, S. (1994). Emergy use, environmental loading and sustainability an emergy analysis of Italy. Ecological Modelling, 73, 215–268.

    Article  Google Scholar 

  • Vassallo, P., Bastianoni, S., Beiso, I., Ridolfi, R., & Fabiano, M. (2007). Emergy analysis for the environmental sustainability of an inshore fish farming system. Ecological Indicators, 7, 290–298.

    Article  Google Scholar 

  • Wang, X., Chen, Y., Sui, P., Gao, W., Qin, F., Wu, X., & Xiong, J. (2014a). Efficiency and sustainability analysis of biogas and electricity production from a large-scale biogas project in China: an emergy evaluation based on LCA. Journal of Cleaner Production, 65, 234–245.

    Article  Google Scholar 

  • Wang, X., Chen, Y., Sui, P., Gao, W., Qin, F., Zhang, J., & Wu, X. (2014b). Emergy analysis of grain production systems on large-scale farms in the North China plain based on LCA. Agricultural Systems, 128, 66–78.

    Article  Google Scholar 

  • Wang, X., Wu, X., Yan, P., Gao, W., Chen, Y., & Sui, P. (2016). Integrated analysis on economic and environmental consequences of livestock husbandry on different scale in China. Journal of Cleaner Production, 119, 1–12.

    Article  Google Scholar 

  • Wang, L., Li, L., Cheng, K., Ji, C., Yue, Q., Bian, R., & Pan, G. (2018). An assessment of emergy, energy, and cost-benefits of grain production over 6 years following a biochar amendment in a rice paddy from China. Environmental Science and Pollution Research, 25, 9683–9696.

    Article  CAS  Google Scholar 

  • Wei, X. M., Chen, B., Qu, Y. H., Lin, C., & Chen, G. Q. (2009). Emergy analysis for ‘four in one’ peach production system in Beijing. Communications in Nonlinear Science and Numerical Simulation, 14, 946–958.

    Article  Google Scholar 

  • Wu, X. H., Wu, F. Q., Tong, X. G., & Jiang, B. (2013). Emergy-based sustainability assessment of an integrated production system of cattle, biogas, and greenhouse vegetables: insight into the comprehensive utilization of wastes on a large-scale farm in Northwest China. Ecological Engineering, 61, 335–344.

    Article  Google Scholar 

  • Yang, J., & Chen, B. (2014). Emergy analysis of a biogas-linked agricultural system in rural China—a case study in Gongcheng Yao Autonomous County. Applied Energy, 118, 173–182.

    Article  Google Scholar 

  • Zhang, L. X., Yang, Z. F., & Chen, G. Q. (2007). Emergy analysis of cropping–grazing system in Inner Mongolia Autonomous Region, China. Energ Policy, 35, 3843–3855.

    Article  Google Scholar 

  • Zhang, L. X., Hu, Q. H., & Wang, C. B. (2013a). Emergy evaluation of environmental sustainability of poultry farming that produces products with organic claims on the outskirts of mega-cities in China. Ecological Engineering, 54, 128–135.

    Article  Google Scholar 

  • Zhang, L. X., Wu, L., Zhang, R., Deng, S., Zhang, Y., Wu, J., Li, Y., Lin, L., Li, L., Wang, Y., & Wang, L. (2013b). Evaluating the relation-ships among economic growth, energy consumption, air emissions and air environmental protection investment in China. Renewable and Sustainable Energy Reviews, 18, 259–270.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohammad Reza Asgharipour.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix

Appendix

The details of natural and economic flow calculation procedure of each system.

Ecologic system

Solar energy = (area, 1 ha) × (10,000 m2 ha−1) × (during growth season, 2.9E + 09 J m−2) × (1-albedo, 0.8) = 2.32E + 13 J.

Wind, kinetic energy = (area, 1 ha) × (10,000 m2 ha−1) × (air density, 1.3 kg m−3) × (drag coefficient, 0.002) × (geostrophic wind, 10/6 × 2.64 m s−1)3 × (growth season, 9.42E + 6 s) = 1.08E + 09 J.

Rain, chemical potential energy = (area, 1 ha) × (10,000 m2 ha−1) × (evapotranspiration, 0.341 m year−1) (density, 1000 kg m−3) (Gibbs free energy, 4740 J kg−1) = 1.62E + 10 J year−1 for precipitation.

Precipitation evapotranspiration energy = (area, 1 ha) × (10,000 m2 ha−1) × (transpiration, 0.117 m year−1) × (density, 1000 kg m−3) × (Gibbs free energy, 4740 J kg−1) = 5.54E + 09 J.

Ground water evapotranspiration energy = (area, 1 ha) × (10,000 m2 ha−1) × (transpiration, 0.612 m year−1) × (density, 1000 kg m−3) × (Gibbs free energy, 4740 J kg−1) = 2.90E + 10 J.

Soil erosion = (area, 1 ha) × (10,000 m2 ha−1) × (soil loss rate, 1.63 kg m−2) × (organic matter content, 0.51%) × (5400 kcal kg−1) × (4186 J kcal−1) = 1.88E + 09 J

Integrated system

Solar energy = (area, 1 ha) × (10,000 m2 ha−1) × (during growth season, 2.9E + 09 J m−2) × (1-albedo, 0.8) = 2.32E + 13 J.

Wind, kinetic energy = (area, 1 ha) × (10,000 m2 ha−1) × (air density, 1.3 kg m−3) × (drag coefficient, 0.002) × (geostrophic wind, 10/6 × 2.64 m s−1)3 × (growth season, 9.42E + 6 s) = 1.08E + 09 J.

Rain, chemical potential energy = (area, 1 ha) × (10,000 m2 ha−1) × (evapotranspiration, 0.341 m year−1) (density, 1000 kg m−3) (Gibbs free energy, 4740 J kg−1) = 1.62E + 10 J year−1 for precipitation.

Precipitation evapotranspiration energy = (area, 1 ha) × (10,000 m2 ha−1) × (transpiration, 0.117 m year−1) × (density, 1000 kg m−3) × (Gibbs free energy, 4740 J kg−1) = 5.54E + 09 J.

Ground water evapotranspiration energy = (area, 1 ha) × (10,000 m2 ha−1) × (transpiration, 0.860 m year−1) × (density, 1000 kg m−3) × (Gibbs free energy, 4740 J kg−1) = 4.08E + 10 J.

Soil erosion = (area, 1 ha) × (10,000 m2 ha−1) × (soil loss rate, 1.73 kg m−2) × (organic matter content, 0.51%) × (5400 kcal kg−1) × (4186 J kcal) = 1.99E + 09 J

Low-input system

Solar energy = (area, 1 ha) × (10,000 m2 ha−1) × (during growth season, 2.9E + 09 J m−2) × (1-albedo, 0.8) = 2.32E + 13 J.

Wind, kinetic energy = (area, 1 ha) × (10,000 m2 ha−1) × (air density, 1.3 kg m−3) × (drag coefficient, 0.002) × (geostrophic wind, 10/6 × 2.64 m s−1)3 × (growth season, 9.42E + 6 s) = 1.08E + 09 J.

Rain, chemical potential energy = (area, 1 ha) × (10,000 m2 ha−1) × (evapotranspiration, 0.341 m year−1) (density, 1000 kg m−3) (Gibbs free energy, 4740 J kg−1) = 1.62E + 10 J year−1 for precipitation.

Precipitation evapotranspiration energy = (area, 1 ha) × (10,000 m2 ha−1) × (transpiration, 0.117 m year−1) × (density, 1000 kg m−3) × (Gibbs free energy, 4740 J kg−1) = 5.54E + 09 J.

Ground water evapotranspiration energy = (area, 1 ha) × (10,000 m2 ha−1) × (transpiration, 0.613 m year−1) × (density, 1000 kg m−3) × (Gibbs free energy, 4740 J kg−1) = 2.91E + 10 J.

Soil erosion = (area, 1 ha) × (10,000 m2 ha−1) × (soil loss rate, 1.70 kg m−2) × (organic matter content, 0.51%) × (5400 kcal kg) × (4186 J kcal−1) = 1.96E + 09 J.

Medium-input system

Solar energy = (area, 1 ha) × (10,000 m2 ha−1) × (during growth season, 2.9E + 09 J m−2) × (1-albedo, 0.8) = 2.32E + 13 J.

Wind, kinetic energy = (area, 1 ha) × (10,000 m2 ha−1) × (air density, 1.3 kg m−3) × (drag coefficient, 0.002) × (geostrophic wind, 10/6 × 2.64 m s−1)3 × (growth season, 9.42E + 6 s) = 1.08E + 09 J.

Rain, chemical potential energy = (area, 1 ha) × (10,000 m2 ha−1) × (evapotranspiration, 0.341 m year−1) (density, 1000 kg m−3) (Gibbs free energy, 4740 J kg−1) = 1.62E + 10 J year−1 for precipitation.

Precipitation evapotranspiration energy = (area, 1 ha) × (10,000 m2 ha−1) × (transpiration, 0.117 m year−1) × (density, 1000 kg m−3) × (Gibbs free energy, 4740 J kg−1) = 5.54E + 09 J.

Ground water evapotranspiration energy = (area, 1 ha) × (10,000 m2 ha−1) × (transpiration, 0.858 m year−1) × (density, 1000 kg m−3) × (Gibbs free energy, 4740 J kg−1) = 4.07E + 10 J.

Soil erosion = (area, 1 ha) × (10,000 m2 ha−1) × (soil loss rate, 1.87 kg m−2) × (organic matter content, 0.51%) × (5400 kcal kg−1) × (4186 J kcal−1) = 2.16E + 09 J

High-input system

Solar energy = (area, 1 ha) × (10,000 m2 ha−1) × (during growth season, 2.9E + 09 J m−2) × (1-albedo, 0.8) = 2.32E + 13 J.

Wind, kinetic energy = (area, 1 ha) × (10,000 m2 ha−1) × (air density, 1.3 kg m−3) × (drag coefficient, 0.002) × (geostrophic wind, 10/6 × 2.64 m s−1)3 × (growth season, 9.42E + 6 s) = 1.08E + 09 J.

Rain, chemical potential energy = (area, 1 ha) × (10,000 m2 ha−1) × (evapotranspiration, 0.341 m year−1) (density, 1000 kg m−3) (Gibbs free energy, 4740 J kg−1) = 1.62E + 10 J year−1 for precipitation.

Precipitation evapotranspiration energy = (area, 1 ha) × (10,000 m2 ha−1) × (transpiration, 0.117 m year−1) × (density, 1000 kg m−3) × (Gibbs free energy, 4740 J kg−1) = 5.54E + 09 J.

Ground water evapotranspiration energy = (area, 1 ha) × (10,000 m2 ha−1) × (transpiration, 1.073 m year−1) × (density, 1000 kg m−3) × (Gibbs free energy, 4740 J kg−1) = 5.09E + 10 J.

Soil erosion = (area, 1 ha) × (10,000 m2 ha−1) × (soil loss rate, 2.42 kg m−2) × (organic matter content, 0.51%) × (5400 kcal kg−1) × (4186 J kcal−1) = 2.78E + 09 J.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Asgharipour, M.R., Shahgholi, H., Campbell, D.E. et al. Comparison of the sustainability of bean production systems based on emergy and economic analyses. Environ Monit Assess 191, 2 (2019). https://doi.org/10.1007/s10661-018-7123-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10661-018-7123-3

Keywords

Navigation