Skip to main content

Advertisement

Log in

Water quality index for agricultural systems in Northwest Uruguay

  • Published:
Environmental Monitoring and Assessment Aims and scope Submit manuscript

Abstract

Agricultural systems have experienced rapid expansion and intensification in the last several decades. In Uruguay, since the beginning of 2000, the most common cropping systems have included soybeans. Currently, this crop is expanding towards lowlands traditionally occupied by rice in rotation with pastures. However, the environmental effects of agricultural intensification and diversification are not well known. Thus, some indices have been proposed to quantify the changes in agricultural production systems and assess water quality. The main goal of this study was to develop a water quality index (WQI) to assess the impacts of the diversification of rice production systems in northwest Uruguay. The study was carried out in an agricultural basin where other summer crops have been incorporated in the rice-pasture sequence. Agriculture intensification and crop diversification indices were calculated using information provided by farmers. Water samples were collected downstream of the production area before crop sowing and after crop harvest (2008–2009 to 2010–2011 and 2016–2017 to 2017–2018). Biochemical oxygen demand, nitrates, total phosphorus, fecal coliforms, and total suspended solids were the variables that mainly explained the effects of the agricultural activities on water quality. The proposed water quality index included these unweighted variables, which allowed for the pre-sowing and post-harvest to be differentiated, as well as the degree of diversification. Therefore, the proposed WQI constitutes a tool that can be used to evaluate the water quality in an agricultural basin. Likewise, it can be used to select agricultural sequences that generate the least possible impacts on the associated water resources.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Abbasi, T., & Abbasi, S. A. (2012). Why Water-Quality Indices. In Water quality indices. Elsevier. https://doi.org/10.1016/B978-0-444-54304-2.00001-4.

  • APHA, A. A. P. H., AWWA, A. W. W. A., & WPCF, W. P. C. F. (1995). In M. A. H. Franson, A. E. Greenberg, J. J. Connors, & D. Jenkins (Eds.), Standard methods for examination of water and waste water (15th ed.). Washington.

  • Arbeletche, P., Coppola, M., & Paladino, C. (2012). Análisis del agro-negocio como forma de gestión empresarial en América del Sur: el caso uruguayo. Agrociencia Uruguay, 16(1), 110–119.

    Google Scholar 

  • Caride, C., Piñeiro, G., & Paruelo, J. M. (2012). How does agricultural management modify ecosystem services in the argentine pampas? The effects on soil C dynamics. Agriculture, Ecosystems & Environment, 154, 23–33.

    Article  Google Scholar 

  • Castillo, J., Bonilla, F., Lucas, T., Amaral, R., & Terra, J. (2013). La integración del cultivo de soja a la rotación arroz-pastura en el este. Revista Arroz, 73, 6–39.

    Google Scholar 

  • Cho, A., Tun Oo, A., & Speelman, S. (2016). Assessment of household food security through crop diversification in Natmauk township, Magway Region, Myanmar. Tropentag 2016. Conference on International Research on Food Security, 1–5.

  • Cordero, R. D., Ruiz, J. E., & Vargas, E. F. (2005). Spatial temporal determination of phosphorus concentration in Lake of Tota. Revista Colombiana de Química, 34(2), 211–218.

    CAS  Google Scholar 

  • Cruse, R., Wang, E., Lee, S., & Chen, X. (2014). Agriculture and water quality. In A. Satinder (Ed.), Comprehensive water quality and purification. Volume 4: Sustainability of water quality (pp. 42–56). Elsevier Inc..

  • Cude, C. G. (2001). Oregon water quality index a tool for evaluating water quality management effectiveness. Journal of the American Water Resources Association, 37(1), 125–137.

    Article  CAS  Google Scholar 

  • Cuffney, T. F., Meador, M. R., Porter, S. D., & Gurtz, M. E. (2000). Responses of physical, chemical, and biological indicators of water quality to a gradient of agricultural land use in the Yakima river basin, Washington. Environmental Monitoring and Assessment, 64, 259–270.

    Article  CAS  Google Scholar 

  • De La Fuente, E. B., & Suárez, S. A. (2008). Problemas ambientales asociados a la actividad humana: La agricultura. Ecologia Austral, 18, 239–252.

    Google Scholar 

  • Debels, P., Figueroa, R., Urrutia, R., Barra, R., & Niell, X. (2005). Evaluation of water quality in the Chillan River (Central Chile) using physicochemical parameters and a modified water quality index. Environmental Monitoring and Assessment, 110, 301–322.

    Article  CAS  Google Scholar 

  • Di Rienzo, J., Casanoves, F., Balzarini, M., González, L., Tablada, M., & Robledo, C. (2016). InfoStat versión 2016. Córdoba: Grupo Infostat, FCA, Universidad Nacional de Córdoba http://www.infostat.com.ar.

    Google Scholar 

  • DIEA. (2010). Encuesta de arroz zafra 2009/2010. Serie encuestas N°291. División de Estadísticas Agropecuarias. Ministerio de ganadería, agricultura y pesca. http://www2.mgap.gub.uy/portal/page.aspx?2,diea,diea,-ipr-produccion-vegetal-arroz,O,es,0,

  • DIEA. (2014). Encuesta arroz. Zafra 2013/14. Serie encuestas N°322. División de Estadísticas Agropecuarias. Ministerio de ganadería, agricultura y pesca. http://www2.mgap.gub.uy/portal/page.aspx?2,diea,diea,-ipr-produccion-vegetal-arroz,O,es,0,

  • DIEA. (2016). Anuario estadístico agropecuario 2016. http://www.mgap.gub.uy/unidad-ejecutora/oficina-de-programacion-y-politicas-agropecuarias/publicaciones/anuarios-diea/anuario2016

  • Farahani, H. J., Peterson, G. A., & Westfall, D. G. (1998). Dryland cropping intensification: a fundamental solution to efficient use of precipitation. Advances in Agronomy, 64, 197–223.

    Article  Google Scholar 

  • Fisher, B., Turner, R. K., & Morling, P. (2009). Defining and classifying ecosystem services for decision making. Ecological Economics, 68, 643–653.

    Article  Google Scholar 

  • Giri, S., & Qiu, Z. (2016). Understanding the relationship of land uses and water quality in twenty first century: A review. Journal of Environmental Management, 173, 41–48.

    Article  Google Scholar 

  • Gonzaga De Toledo, L., & Nicolella, G. (2002). Indice de qualidade de agua em microbacia sob uso agricola e urbano. Scientia Agricola, 59(1), 181–186.

    Article  Google Scholar 

  • Hammer, Ø., Harper, D. A. T. a. T., & Ryan, P. D. (2001). PAST: Paleontological statistics software package for education and data analysis. Palaeontologia Electronica, 4(1), 1–9.

    Google Scholar 

  • Hoorman, J., Hone, T., Sudman, T., Dirksen, T., Iles, J., & Islam, K. R. (2008). Agricultural impacts on Lake and stream water quality in grand lake St. Marys, western Ohio. Water, Air, and Soil Pollution, 193(1–4), 309–322.

    Article  CAS  Google Scholar 

  • Kumar, S., & Gupta, S. (2015). Crop diversification towards high-value crops in India: a state level empirical analysis. Agricultural Economics Research Review, 28(2), 339–350.

    Article  Google Scholar 

  • Lal, H., & McKinney, S. (2017). WQIag—water quality index for runoff water from agricultural fields Natural Resources Conservation Service. United States Department of Agriculture. Agronomy Technical Note, 11, 1–20. https://directives.sc.egov.usda.gov/OpenNonWebContent.aspx?content=40577.wba.

    CAS  Google Scholar 

  • Lanfranco, B. (2013). Arroz o soja: ¿es realmente esa la cuestión? Revista INIA, 34, 38–43.

    Google Scholar 

  • Ledesma, C., Bonansea, M., Rodriguez, C. M., & Delgado, A. R. S. (2013). Determinación de indicadores de eutrofización en el embalse Río Tercero, Córdoba (Argentina). Revista Ciencia Agronomica, 44(3), 419–425.

    Article  Google Scholar 

  • Mon, R., Irurtia, C., Botta, G., Pozzolo, O., Bellora, F., Rivero, D., & Bomben, M. (2007). Effects of supplementary irrigation on chemical and physical soil properties in the rolling pampa region of Argentina. Ciencia e Investigación Agraria, 34(3), 187–194.

    Article  Google Scholar 

  • Monteiro, M. I. C., Ferreira, F. N., De Oliveira, N. M. M., & Avila, A. K. (2003). Simplified version of the sodium salicylate method for analysis of nitrate in drinking waters. Analytica Chimica Acta, 477(1), 125–129.

    Article  CAS  Google Scholar 

  • Monzon, J. P., Mercau, J. L., Andrade, J. F., Caviglia, O. P., Cerrudo, A. G., Cirilo, A. G., Vega, C. R. C., Andrade, F. H., & Calviño, P. A. (2014). Maize-soybean intensification alternatives for the pampas. Field Crops Research, 162, 48–59.

    Article  Google Scholar 

  • Mukherjee, A. (2015). Evaluation of the policy of crop diversification as a strategy for reduction of rural poverty in India. Poverty Reduction Policies and Practices in Developing Asia, Chapter, 7, 125–143.

    Google Scholar 

  • Nishida, M. (2016). Decline in fertility of paddy soils induced by paddy rice and upland soybean rotation, and measures against the decline. Japan Agricultural Research Quarterly, 50(2), 87–94.

    Article  CAS  Google Scholar 

  • Nishida, M., Sekiya, H., & Yoshida, K. (2013). Status of paddy soils as affected by paddy rice and upland soybean rotation in Northeast Japan, with special reference to nitrogen fertility. Soil Science and Plant Nutrition, 59(2), 208–217.

    Article  CAS  Google Scholar 

  • Novelli, L. E., Caviglia, O. P., & Melchiori, R. J. M. (2011). Impact of soybean cropping frequency on soil carbon storage in Mollisols and Vertisols. Geoderma, 167–168, 254–260.

    Article  Google Scholar 

  • Novelli, L. E., Caviglia, O. P., Wilson, M. G., & Sasal, M. C. (2013). Land use intensity and cropping sequence effects on aggregate stability and C storage in a vertisol and a Mollisol. Geoderma, 195–196, 260–267.

    Article  Google Scholar 

  • Oesterheld, M. (2008). Impacto de la agricultura sobre los ecosistemas. Fundamentos ecológicos y problemas más relevantes. Ecologia Austral, 18, 337–346.

    Google Scholar 

  • Ongley, E. D. (1996). Control of water pollution from agriculture. FAO Irrigation and Drainage Paper, 55, 37–52. ftp://ftp.fao.org/agl/aglw/docs/idp55e.pdf

  • Pal, S., & Kar, S. (2012). Implications of the methods of agricultural diversification in reference with Malda District: drawback and rationale. International Journal of Food, Agriculture and Veterinary Sciences, 2(2), 97–105.

    Google Scholar 

  • Paruelo, J. M., Guerschman, J. P., Piñeiro, G., Jobbágy, E. G., Verón, S. R., Baldi, G., & Baeza, S. (2006). Cambios en el uso de la tierra en Argentina y Uruguay: marcos conceptuales para su análisis. Agrociencia, 10(2), 47–61.

    Google Scholar 

  • Pesce, S. F., & Wunderlin, D. A. (2000). Use of water quality indices to verify the impact of Cordoba city (Argentina) on Suquia River. Water Research, 34(11), 2915–2926.

    Article  CAS  Google Scholar 

  • Pittelkow, C. M., Zorrilla, G., Terra, J., Riccetto, S., Macedo, I., Bonilla, C., & Roel, A. (2016). Sustainability of rice intensification in Uruguay from 1993 to 2013. Global Food Security, 9, 10–18.

    Article  Google Scholar 

  • Ray, S., Bari, S., & Shuvro, S. (2015). Assessment of water quality of Goalichara : a water quality index based approach. ARPN Journal of Science and Technology, 5(7), 336–340.

    Google Scholar 

  • Sande, P., Mirás, J. M., Vidal, E., & Paz, A. (2005). Formas de fósforo y su relación con la erosión en aguas superficiales bajo clima atlántico. Estudios de la zona no saturada del suelo, VII, 125–130.

  • Sharpley, A. (1995). Identifying sites vulnerable to phosphorus loss in agricultural runoff. Journal of Environment Quality, 24, 947–951.

    Article  CAS  Google Scholar 

  • Strahler, A. N. (1986). Geografía Física. Omega.

  • Studdert, G. A., & Echeverría, H. E. (2000). Crop rotations and nitrogen fertilization to manage soil organic carbon dynamics. Soil Science Society of America Journal, 64, 1496–1503.

    Article  CAS  Google Scholar 

  • Tyagi, S., Sharma, B., Singh, P., & Dobhal, R. (2013). Water quality assessment in terms of water quality index. American Journal of Water Resources, 1(3), 34–38.

    Google Scholar 

  • Van Opstal, N. V., Caviglia, O. P., & Melchiori, R. J. M. (2011). Water and solar radiation productivity of double-crops in a humid temperate area. Australian Journal of Crop Science, 5(13), 1760–1766.

    Google Scholar 

  • Viglizzo, E. F., Lértora, F., Pordomingo, A. J., Bernardos, J. N., Roberto, Z. E., & Del Valle, H. (2001). Ecological lessons and application from one century of low external-input farming in the pampas of Argentina. Agriculture Ecosystems. and Environment, 83, 65–81.

    Article  Google Scholar 

  • Withers, P. J., Neal, C., Jarvie, H. P., & Doody, D. G. (2014). Agriculture and eutrophication: where do we go from here? Sustainability (Switzerland), 6, 5853–5875.

    Article  Google Scholar 

Download references

Acknowledgements

We express our thanks to Mr. César Burgos and Roberto Guzman for their assistance with the fieldwork.

Funding

This study was funded by the National Agricultural Research Institute Project SA01.4 and Development Basic Sciences Foundation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gabriela Eguren.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Eguren, G., Rivas-Rivera, N., García, C. et al. Water quality index for agricultural systems in Northwest Uruguay. Environ Monit Assess 190, 710 (2018). https://doi.org/10.1007/s10661-018-7090-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10661-018-7090-8

Keywords

Navigation