Effect of placement conditions for active monitoring of trace element with the epiphytic moss

  • Natalya S. RogovaEmail author
  • Nadezhda K. Ryzhakova
  • Alex L. Borisenko


In this work, problems arising by use of active biomonitoring are discussed. Biomonitoring technique using positioned vertically frameworks and epiphytic moss Pylaisia polyantha is proposed. The influence of tree species on which the bark of the frameworks is fixed, altitude, and orientation is researched. For this purpose, frameworks were placed at two sampling sites of Tomsk on different trees (poplar, birch), at altitudes of 0.5 and 1.5 and with different orientations in May; the exposure time was 20 weeks. The concentrations of As, Ba, Br, Ca, Ce, Co, Cr, Cs, Eu, Fe, Hf, K, La, Lu, Mo, Rb, Sb, Sc, Sm, Tb, Th, U, Yb, and Zn were determined by neutron activation analysis at the research reactor of Tomsk Polytechnic University. Increasing concentrations of half of the chemical elements was revealed during the exposure. The high-capacity frameworks used to accumulate certain elements—Cs, Eu, Hf, K, Lu, Sb, Yb—were revealed.


Methods of transplantation Bioindicator Air pollution Chemical elements Neutron activation analysis 


Funding information

The research is funded by the Russian Science Foundation (RSF) Grant Number 17-77-10060.


  1. Adamo, P., Giordano, S., Vingiani, S., Castaldo Cobianchi, R., & Violante, P. (2003). Trace element accumulation by moss and lichen exposed in bags in the city of Naples (Italy). Environmental Pollution, 122(1), 91–103.CrossRefGoogle Scholar
  2. Adamo, P., Crisafulli, P., Giordano, S., Minganti, V., Modenesi, P., Monaci, F., Pittao, E., Tretiach, M., & Bargagli, R. (2007). Lichen and moss bags as monitoring devices in urban areas. Part II: trace element content in living and dead biomonitors and comparison with synthetic materials. Environmental Pollution, 146(2), 392–399.CrossRefGoogle Scholar
  3. Adamo, P., Giordano, S., Sforza, A., & Bargagli, R. (2011). Implementation of airborne trace element monitoring with devitalised transplants of Hypnum cupressiforme Hedw.: assessment of temporal trends and element contribution by vehicular traffic in Naples city. Environmental Pollution, 159(6), 1620–1628.CrossRefGoogle Scholar
  4. Ares, A., Aboal, J. R., Carballeira, A., Giordano, S., Adamo, P., & Fernández, J. A. (2012). Moss bag biomonitoring: a methodological review. Science of the Total Environment, 432, 143–158.CrossRefGoogle Scholar
  5. Ares, A., Fernandez, J. A., Carballeira, A., & Aboal, J. R. (2014). Towards the methodological optimization of the moss bag technique in terms of contaminants concentrations and replicability values. Atmospheric Environment, 94, 496–507.CrossRefGoogle Scholar
  6. Berlyand, M. Y. (1975). Modern problems of atmospheric diffusion and air pollution. Translated version by NEPC, USEPA, Raleigh, NC.Google Scholar
  7. Boquete, M. T., Fernández, J. A., Aboal, J. R., & Carballeira, A. (2011). Analysis of temporal variability in the concentrations of some elements in the terrestrial moss Pseudoscleropodium purum. Environmental and Experimental Botany, 72(2), 210–216.CrossRefGoogle Scholar
  8. Borisenko, A., Ryzhakova, N., Rogova, N., Merkulov, V., & Kabanov, D. (2014). Peculiarities of chemical elements accumulation by epiphytic moss Pylaisia polyantha (Hedw.) B.S.G. in varying natural environments of West Siberia. International Journal of Environmental Studies, 71(5), 685–690.CrossRefGoogle Scholar
  9. Capozzi, F., et al. (2014). Best options for the exposure of traditional and innovative moss bags: a systematic evaluation in three European countries. Environmental Pollution, 214, 362–373.CrossRefGoogle Scholar
  10. Couto, J. A., Aboal, J. R., Fernandez, J. A., & Carballeira, A. (2004). A new method for testing the sensitivity of active biomonitoring: an example of its application to a terrestrial moss. Chemosphere, 57(4), 303–308.CrossRefGoogle Scholar
  11. De Nicola, F., et al. (2013). A multi-approach monitoring of particulate matter, metals and PAHs in an urban street canyon. Environmental Science and Pollution Research, 20, 4969–4979.CrossRefGoogle Scholar
  12. Fernandez, J. A., Ares, A., Rey-Asensio, A., Carballeira, A., & Aboal, J. R. (2009). Effect of growth on active biomonitoring with terrestrial mosses. Journal of Atmospheric Chemistry, 63(1), 1–11.CrossRefGoogle Scholar
  13. Gailey, F. A. Y., & Lloyd, O. L. (1986). Methodological investigations into low technology monitoring of atmospheric metal pollution: part 1—the effects of sampler size on metal concentrations. Environmental Pollution. Series B: Chemical and Physical, 12(1), 41–59.CrossRefGoogle Scholar
  14. Giordano, S., Adamo, P., Spagnuolo, V., Tretiach, M., & Bargagli, R. (2013). Accumulation of airborne trace elements in mosses, lichens and synthetic materials exposed at urban monitoring stations: towards a harmonisation of the moss-bag technique. Chemosphere, 90, 292–299.CrossRefGoogle Scholar
  15. Goodman, G. T., & Roberts, T. M. (1971). Plants and soils as indicators of metals in the air. Nature, 231, 287–292.CrossRefGoogle Scholar
  16. Goryainova, Z., Vuković, G., Aničić Urošević, M., Vergel, K., Ostrovnaya, T., Frontasyeva, M., & Zechmeister, H. (2016). Assessment of vertical element distribution in street canyons using the moss Sphagnum girgensohnii: a case study in Belgrade and Moscow cities. Atmospheric Pollution Research, 7(4), 690–697.CrossRefGoogle Scholar
  17. Iodice, P., Adamo, P., Capozzi, F., Di Palma, A., Senatorea, A., Spagnuolo, V., & Giordano, S. (2016). Air pollution monitoring using emission inventories combined with the moss bag approach. Science of the Total Environment, 541, 1410–1419.CrossRefGoogle Scholar
  18. Laihtman, D. L. (1976). Dynamic meteorology. Leningrad: Gidrometeoizdat.Google Scholar
  19. Monin, A. S., Yaglom, A.M. (1971). Statistical fluid mechanics: The mechanics of turbulence. Cambridge: MIT Press.Google Scholar
  20. Rivera, M., Zechmeister, H., Medina-Ramón, M., Basagaña, X., Foraster, M., Bouso, L., Moreno, T., Solanas, P., Ramos, R., Köllensperger, G., Deltell, A., Vizcaya, D., & Künzli, N. (2011). Monitoring of heavy metal concentrations in home outdoor air using moss bags. Environmental Pollution, 159, 954–962.CrossRefGoogle Scholar
  21. Ryzhakova, N., Rogova, N., Pokrovskaya, E. (2012). Determination of the influence zone on the atmospheric pollution of chemical elements from a point source (Combined heat and power). IFOST 2012 : The 7th International Forum on Strategic Technology, 1, 137–141.Google Scholar
  22. Ryzhakova, N., Rogova, N., & Borisenko, A. (2014). Research of mosses accumulation properties used for assessment of regional and local atmospheric pollution. Environmental Research, Engineering and Management, 69(3), 84–91.CrossRefGoogle Scholar
  23. Ryzhakova, N., Borisenko, A., & Babicheva, V. (2017). Use of moss biomonitors for turbulent transport coefficient estimation for industrial emissions. Atmospheric Pollution Research, 8(5), 997–1004.CrossRefGoogle Scholar
  24. Temple, P. J., McLaughlin, D. L., Linzon, S. N., & Wills, R. (1981). Moss bags as monitors of atmospheric deposition. Journal of the Air Pollution Control Association, 31(6), 668–670.CrossRefGoogle Scholar
  25. Tretiach, M., Adamo, P., Bargagli, R., Baruffo, L., Carletti, L., Crisafulli, P., Giordano, S., Modenesi, P., Orlando, S., & Pittao, E. (2007). Lichen and moss bags as monitoring devices in urban areas. Part I: influence of exposure on sample vitality. Environmental Pollution, 146(2), 380–391.CrossRefGoogle Scholar
  26. Vuković, G., Aničić, U., Škrivanj, S., Milićević, T., Dimitrijević, D., Tomašević, M., & Popović, A. (2016). Moss bag biomonitoring of airborne toxic element decrease on a small scale: a street study in Belgrade, Serbia. Science of the Total Environment, 542, 394–403.CrossRefGoogle Scholar
  27. Yurukova, L., Petrova, S., Velcheva, I., & Aleksieva, I. (2013). Preliminary data of moss-bags technique in an urban area (Plovdiv, Bulgaria). Comptes Rendus de l'Académie Bulgare des Sciences, 66(8), 1135–1138.Google Scholar
  28. Zechmeister, H. G., Dullinger, S., Hohenwallner, D., Riss, A., Hanus-Illnar, A., & Scharf, S. (2006). Pilot study on road traffic emissions (PAHs, heavy metals) measured by using mosses in a tunnel experiment in Vienna, Austria. Environmental Science and Pollution Research, 13(6), 398–405.CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2018

Authors and Affiliations

  1. 1.Tomsk Polytechnic UniversityTomskRussia
  2. 2.Tomsk State UniversityTomskRussia

Personalised recommendations