Skip to main content

Estimation of chlorophyll a content in inland turbidity waters using WorldView-2 imagery: a case study of the Guanting Reservoir, Beijing, China


Complex optical properties, such as non-pigment suspension and colored dissolved organic matter (CDOM), make it difficult to achieve accurate estimations of remotely sensed chlorophyll a (Chla) content of inland turbidity. Recent attempts have been made to estimate Chla based on red and near-infrared regions where non-pigment suspension and CDOM have little effect on water reflectance. The objective of this study is to validate the applicability of WV-2 imagery with existing effective estimation methods from MERIS when estimating Chla content in inland turbidity waters. The correlation analysis of measured Chla content and WV-2 imagery bands shows that the Chla sensitive bands of WV-2 are red edge, NIR 1, and NIR 2. The coastal band is designed for seawater Chla detection. However, the high correlation with turbidity data and low correlation with Chla made coastal band unsuitable for estimating Chla in inland waters. The high-resolution water body images were extracted by combining the spectral products (NDWI) with the spatial morphological products (sobel edge detection). The estimation results show that the accuracy of the single band and NDCI is not as good as the two-band method, three-band method, stepwise regression algorithm (SRA) and support vector machines (SVM). The SVM estimation accuracy was the highest with an R2, RMSE, and URMSE of 0.8387, 0.4714, and 19.11%, respectively. This study demonstrates that the two-band and three-band methods are effective for estimating Chla in inland water for WV-2 imagery. As a high-precision estimation method, SVM has great potential for inland turbidity water Chla estimation.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13


  • Chang, C. C., & Lin, C. J. (2011). LIBSVM: A library for support vector machines. ACM, 2(3), 1–27.

    Article  Google Scholar 

  • Chen, Y., Shi, R., Shu, S., & Gao, W. (2013). Ensemble and enhanced pm 10, concentration forecast model based on stepwise regression and wavelet analysis. Atmospheric Environment, 74(74), 346–359.

    Article  CAS  Google Scholar 

  • Dall'Olmo, G., & Gitelson, A. A. (2005). Effect of bio-optical parameter variability on the remote estimation of chlorophyll-a concentration in turbid productive waters: Experimental results. Applied Optics, 44(3), 412–422.

    Article  Google Scholar 

  • Dall'Olmo, G., & Gitelson, A. A. (2006). Effect of bio-optical parameter variability and uncertainties in reflectance measurements on the remote estimation of chlorophyll-a concentration in turbid productive waters: Modeling results. Applied Optics, 45(15), 3577–3592.

    Article  CAS  Google Scholar 

  • Dall'Olmo, G., Gitelson, A. A., Rundquist, D. C., Leavitt, B., Barrow, T., & Holz, J. C. (2005). Assessing the potential of seawifs and modis for estimating chlorophyll concentration in turbid productive waters using red and near-infrared bands. Remote Sensing of Environment, 96(2), 176–187.

    Article  Google Scholar 

  • DigitalGlobe (2009). The benefits of the 8 spectral bands of WorldView-2. Accessed 20 July 2011.

  • Duan, H., Lei, Y. U., Zhang, B., Liu, D., & Song, K. (2006). Hyperspectral data applied in monitoring and evaluating the water trophic state of Lake Chagan. Acta Scientiae Circumstantiae, 26(7), 1219–1226.

    CAS  Google Scholar 

  • Gitelson, A. (1992). The peak near 700 nm on radiance spectra of algae and water: Relationships of its magnitude and position with chlorophyll concentration. International Journal of Remote Sensing, 13, 3367–3373.

    Article  Google Scholar 

  • Gitelson, A. A., Dall'Olmo, G., Moses, W., Rundquist, D. C., Barrow, T., Fisher, T. R., Gurlin, D., & Holz, J. (2008). A simple semi-analytical model for remote estimation of chlorophyll- a, in turbid waters: Validation. Remote Sensing of Environment, 112(9), 3582–3593.

    Article  Google Scholar 

  • Gons, H. J. (1999). Optical teledetection of chlorophyll a in turbid inland waters. Environmental Science & Technology, 33(7), 1127–1132.

    Article  CAS  Google Scholar 

  • Gons, H. J., Rijkeboer, M., & Ruddick, K. G. (2005). Effect of a waveband shift on chlorophyll retrieval from meris imagery of inland and coastal waters. Journal of Plankton Research, 27(1), 125–127.

    Article  CAS  Google Scholar 

  • Goodin, D. G., Han, L., Fraser, R. N., Rundquist, D. C., Stebbins, W. A., & Schalles, J. F. (1993). Analysis of suspended solids in water using remotely sensed high resolution derivative spectra. Photogrammetric Engineering & Remote Sensing, 59(4), 505–510.

    Google Scholar 

  • Gordon, H. R., & Morel, A. Y. (1983). Remote assessment of ocean color for interpretation of satellite visible imagery. Physics of the Earth & Planetary Interiors, 37(4), 292.

    Article  Google Scholar 

  • Han, L. H., & Rundquist, D. C. (1997). Comparison of NIR/RED ratio and first derivative of reflectance in estimating algal-chlorophyll concentration: A case study in a turbid reservoir. Remote Sensing of Environment, 62, 253–261.

    Article  Google Scholar 

  • Hooker, S. B., Lazin, G., Zibordi, G., & Mclean, S. (2002). An evaluation of above- and in-water methods for determining water-leaving radiances. Journal of Atmospheric & Oceanic Technology, 19(4), 486–515.<0486:AEOAAI>2.0.CO;2.

    Article  Google Scholar 

  • Jiao, H. B., Zha, Y., Gao, J., Li, Y. M., Wei, Y. C., & Huang, J. Z. (2006). Estimation of chlorophyll-a concentration in Lake Tai, China using in situ hyperspectral data. International Journal of Remote Sensing, 27(19), 4267–4276.

    Article  Google Scholar 

  • Kirk, J. T. O. (1994). Light and photosynthesis in aquatic ecosystems, 2nd Edition [M]. Cambridge: Cambridge University Press.

    Book  Google Scholar 

  • Laben, C. A., & Brower, B. V. (2000). Process for enhancing the spatial resolution of multispectral imagery using pan-sharpening. Websterny Uspenfieldny Us.

  • Le, C., Hu, C., Cannizzaro, J., English, D., Muller-Karger, F., & Lee, Z. (2013). Evaluation of chlorophyll-a remote sensing algorithm for an optically complex estuary. Remote Sensing of Environment, 129(2), 75–89.

    Article  Google Scholar 

  • Le, C. F., Li, Y. M., Yong, Z., Sun, D. Y., Huang, C. C., & Lu, H. (2009). A four-band semi-analytical model for estimating chlorophyll a in highly turbid lakes: The case of Taihu Lake, China. Remote Sensing of Environment, 113(6), 1175–1182.

    Article  Google Scholar 

  • Lin, C., Wu, C. C., Tsogt, K., Ouyang, Y. C., & Chang, C. I. (2015). Effects of atmospheric correction and pansharpening on LULC classification accuracy using WorldView-2 imagery. Information Processing in Agriculture, 2(1), 25–36.

    Article  Google Scholar 

  • Manakos, I., Manevski, K., Kalaitzidis, C., & Edler, D. (2011). Comparison between FLAASH & ATCOR atmospheric correction modules on the basis of WorldView-2 imagery and in situ spectroradiometric measurements. Earsel, Sig-Imaging Spectroscopy Workshop.

  • Mcfeeters, S. K. (1996). The use of the normalized difference water index (ndwi) in the delineation of open water features. International Journal of Remote Sensing, 17(7), 1425–1432.

    Article  Google Scholar 

  • Mishra, S., & Mishra, D. R. (2012). Normalized difference chlorophyll index: A novel model for remote estimation of chlorophyll- a, concentration in turbid productive waters. Remote Sensing of Environment, 117(2), 394–406.

    Article  Google Scholar 

  • Mobley, C. D. (1994). Light and water: Radiative transfer in natural waters. Academic Press.

  • O'Reilly, J. E., Maritorena, S., Mitchell, B. G., Siegel, D. A., Carder, K. L., Garver, S. A., Kahru, M., & McClain, C. (1998). Ocean color chlorophyll algorithms for seawifs. Journal of Geophysical Research Oceans, 103(C11), 24937–24953.

    Article  CAS  Google Scholar 

  • Pu, R., & Landry, S. (2012). A comparative analysis of high spatial resolution IKONOS and WorldView-2 imagery for mapping urban tree species. Remote Sensing of Environment, 124(9), 516–533.

    Article  Google Scholar 

  • Schalles, J. F. (2006). Optical remote sensing techniques to estimate phytoplankton chlorophyll a concentrations in coastal. Remote sensing of aquatic coastal ecosystem processes.

    Google Scholar 

  • Sun, D. Y., Li, Y. M., & Qiao, W. (2009). A unified model for remotely estimating chlorophyll a in Lake Taihu, China, based on SVM and in situ hyperspectral data. IEEE Transactions on Geoscience & Remote Sensing, 47(8), 2957–2965.

    Article  Google Scholar 

  • Tang, J., Tian, G., Wang, X., Wang, X., & Song, Q. (2004). The methods of water spectra measurement and analysis I: Above-water method. Journal of Remote Sensing, (01):37–44.

  • Vapnik, V. (1996). Support vector method for function approximation, regression estimation, and signal processing. Advances in Neural Information Processing Systems, 9, 281–287.

    Google Scholar 

  • Wang, J. (2013). Pearson correlation coefficient. Springer New York, Pearson Correlation Coefficient.

    Chapter  Google Scholar 

  • Wang, X. L., Zhou, Z. Y., & Yan, J. P. (2009). Apply GA-SVM to retrieve water quality parameters of Weihe River from multispectral remote sensing data. Journal of Remote Sensing, 13(4), 735–744.

    Google Scholar 

  • Yacobi, Y. Z., Moses, W. J., Kaganovsky, S., Sulimani, B., Leavitt, B. C., & Gitelson, A. A. (2011). Nir-red reflectance-based algorithms for chlorophyll- a, estimation in mesotrophic inland and coastal waters: Lake Kinneret case study. Water Research, 45(7), 2428–2436.

    Article  CAS  Google Scholar 

  • Zhang, Y., Ma, R., Duan, H., Loiselle, S., Zhang, M., & Xu, J. (2016). A novel MODIS algorithm to estimate chlorophyll a concentration in eutrophic turbid lakes. Ecological Indicators, 69, 138–151.

    Article  CAS  Google Scholar 

  • Zhen, Z., Gong, Z. N., & Zhao, W. J. (2012). Analysis of hydrophytes for spatial evolution pattern in Guanting Reservoir, China. Journal of Agro-Environment Science, 31(8), 1586–1595.

    Google Scholar 

  • Zhou, Y., Zhou, W. Q., Wang, S. X., & Zhang, P. (2004). Applications of remote sensing techniques to inland water quality monitoring. Advances in Water Science, 15(3), 312–317.

  • Zhu, X., Zhang, H., Lei, P., Zhang, B., Shan, B., & Shi, M. (2015). Historical distribution characteristics of major elements in Guanting Reservoir sediment. Huanjing Kexue Xuebao 36(2).

Download references


This research was financially supported by the International Science & Technology Cooperation Program of China (Grant no.2014DFA21620).

Author information

Authors and Affiliations


Corresponding author

Correspondence to Zhaoning Gong.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Wang, X., Gong, Z. & Pu, R. Estimation of chlorophyll a content in inland turbidity waters using WorldView-2 imagery: a case study of the Guanting Reservoir, Beijing, China. Environ Monit Assess 190, 620 (2018).

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI:


  • Inland turbid waters
  • WV-2 imagery
  • Red edge
  • Sobel edge detection
  • Chlorophyll a estimation algorithms
  • SVM