Skip to main content
Log in

WTP and WWTP sludge management: a case study in the metropolitan area of Campinas, southeastern Brazil

Environmental Monitoring and Assessment Aims and scope Submit manuscript

Abstract

Disposal of sludges generated at water treatment plants (WTPs) and wastewater treatment plants (WWTPs) located in highly urbanized regions challenges water industry. Legal restrictions based on public health and sustainability push managers forward in order to find beneficial use markets rather than deficit and high-cost landfilling. A GIS-based linear optimization method for sludge management was firstly proposed. The metropolitan area of Campinas belongs to the watershed of the rivers Piracicaba, Capivari, and Jundiaí (PCJ), which comprises 76 municipalities, representing over 5 million urban consumers, supplied by 100 WTPs and 116 WWTPs. An assessment of soils feasibility for WWTP sludge reception was carried out. The beneficial uses assumed to be the best for WTP and WWTP sludges were, respectively, addition in the industrial process of ceramic bricks manufacture, and application on sugarcane crop areas for ethanol production. Three scenarios were set for sludges from WTPs and also for WWTPs. Those scenarios represented maximum, intermediate, and minimum reception capability for each reception location or area. Ceramic industries located within PCJ watershed showed to be capable of receptioning the total amount of WTP sludges, if a minimum 2% mass/mass replacement of raw materials (mainly clay) is provided. There are plenty of feasible areas for WWTP sludge application; thus, sludge agronomic quality and farmers’ acceptance constitute the only steps to climb. This paper brings an innovative tool regarding sludge management which may be useful to decision-makers, especially wherever several sources and reception areas are playing on game board. The proposed method can be applied at different locations and for other sludge uses.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  • Ahmad, T., Ahmad, K., & Alam, M. (2017). Sludge quantification at water treatment plant and its management scenario. Environmental Monitoring and Assessment, 189(9), 1–10. https://doi.org/10.1007/s10661-017-6166-1.

    Article  CAS  Google Scholar 

  • Andreoli, C. V., Pegorini, E. S., Fernandes, F., & dos Santos, H. F. (2007). Land application of sewage sludge. In C. V. Andreoli, M. Von Sperling, & F. Fernandes (Eds.), Sludge treatment and disposal. London: IWA Publishing.

    Google Scholar 

  • AWWARF (American Water Works Association Research Foundation). (2007). Advancing the science of water: AWWARF and water treatment residuals. In AWWARF, State of the science reports: research on residuals from water treatment. USA: Awwa Research Foundation.

    Google Scholar 

  • Babatunde, A., & Zhao, Y. Q. (2007). Constructive approaches toward water treatment works sludge management: An international review of beneficial reuses. Critical Reviews in Environmental Science and Technology, 37(2), 129–164. https://doi.org/10.1080/10643380600776239.

    Article  CAS  Google Scholar 

  • Biociclo. (2012). Estudo de viabilidade para instalação e operação de centrais de tratamento de lodo na bacia do PCJ (feasibility study for installation and operation of treatment centrals of sludge in the pcj watershed). Americana, BR: PCJ consortium.

    Google Scholar 

  • Bittencourt, S., Serrat, B. M., Aisse, M. M., Marin, L. M. K. S., & Simão, C. C. (2012). Application of sludges from water treatment plant and from sewage treatment plant in degraded soil (in portuguese). Engenharia Sanitária e Ambiental, 17(3), 315–324. https://doi.org/10.1590/S1413-41522012000300008.

    Article  Google Scholar 

  • Botero, W. G., Santos, A., Oliveira, L. C., & Rocha, J. C. (2009). Characterization of sludge generated in water treatment plants: prospects for agricultural application (in portuguese). Química Nova, 32(8), 2018–2022. https://doi.org/10.1590/S0100-40422009000800007.

    Article  CAS  Google Scholar 

  • Brazil. (2010). Política nacional dos resíduos sólidos (national solid waste policy). Brasília, BR: Câmara dos Deputados.

    Google Scholar 

  • Cakmakci, M., Erdim, E., Kinaci, C., & Akca, L. (2005). Evaluation of sludge management alternatives in Istanbul metropolitan area. Water Science & Technology, 51(11), 121–129.

    Article  CAS  Google Scholar 

  • Chávez-Porras, A., Isaac, R. L., & Morita, D. (2008). Use of dry sludge from a treatment water plant station and aggregated recycled from civil construction in the manufacture of cement soil bricks (in portuguese). Ciência e Ingenieria Neogranadina, 18(2), 5–28.

    Article  Google Scholar 

  • Clarke, B. O., & Smith, S. R. (2011). Review of “emerging” organic contaminants in biosolids and assessment of international research priorities for the agricultural use of biosolids. Environment International, 37(1), 226–247. https://doi.org/10.1016/j.envint.2010.06.004.

    Article  CAS  Google Scholar 

  • COBRAPE (Brazilian Company for Projects and Developments). (2011). Plano da bacia dos rios Piracicaba, Capivari e Jundiaí de 2010 a 2020 – Relatório Final (Plan watershed of Piracicaba, Capivari and Jundiaí rivers from 2010 to 2020 - final report) (p. 815). São Paulo: Cobrape/Neoband Soluções Gráficas.

    Google Scholar 

  • Cornwell, D. A., Mutter, R. N., & Vandermeyden, C. (2000). Commercial application and marketing of water plant residuals. Denver, USA: American Water Works Association.

    Google Scholar 

  • European Communities. (2001). Disposal and recycling routes for sewage sludge: part 1 – sludge use acceptance report (pp. 37–81). Luxembourg, LU: Office for Official Publications of the European Communities.

    Google Scholar 

  • Fadanelli, L. E. A., & Wiecheteck, G. K. (2010). Utilization of sludge from water treatment plant in soil cement for paving roads (in portuguese). Revista de Engenharia e Tecnologia, 2(2), 31–37.

    Google Scholar 

  • Franus, M., Barnat-Hunek, D., & Wdowin, M. (2016). Utilization of sewage sludge in the manufacture of lightweight aggregate. Environmental Monitoring and Assessment, 188(1), 1–13. https://doi.org/10.1007/s10661-015-5010-8.

    Article  CAS  Google Scholar 

  • Galdos, M. V., Maria, I. C., Camargo, O. A., & Dechen, C. F. (2009). Sewage sluge application on cultivated soils effects on runoff and trace metal load. Scientia Agricola, 66(3), 368–376. https://doi.org/10.1590/S0103-90162009000300012.

    Article  CAS  Google Scholar 

  • Giri, S., Nejadhashemi, A. P., & Woznicki, S. A. (2012). Evaluation of targeting methods for implementation of best management practices in the Saginaw River watershed. Journal of Environmental Management, 103, 24–40. https://doi.org/10.1016/j.jenvman.2012.02.033.

    Article  CAS  Google Scholar 

  • Godbold, P., Lewin, K., Graham, A., & Barker, P. (2003). The potential reuse of water utility products as secondary commercial materials. WRc Report No.: UC 6081.

  • Hara, K., & Mino, T. (2008). Environmental assessment of sewage sludge recycling options and treatment processes in Tokyo. Waste Management, 28, 2645–2652. https://doi.org/10.1016/j.wasman.2008.02.020.

    Article  CAS  Google Scholar 

  • Huang, C., Pan, J. R., Sun, K. D., & Liaw, C. T. (2001). Reuse of water treatment plant sludge and dam sediment in brick-making. Water Science & Technology, 44(10), 273–277.

    Article  CAS  Google Scholar 

  • Isaac, R. L., Morita, D. M., Luvizzotto Jr., E., & Ferrão, A. M. A. (2002). Use of dewatered sludge in building construction components, in: Proceedings of management of wastes from drinking water treatment. London: The Chartered Institution of Water and Environmental Management.

    Google Scholar 

  • Ivey, J. L., de Loë, R. C., & Kreutzwiser, R. D. (2002). Groundwater management by watershed agencies: an evaluation of the capacity of Ontario’s conservation authorities. Journal of Environmental Management, 64(3), 311–331. https://doi.org/10.1006/jema.2001.0557.

    Article  Google Scholar 

  • Jenks, G. F. (1967). The data model concept in statistical mapping. International Yearbook of Cartography, 7, 186–190.

    Google Scholar 

  • JUCESP (Board of Trade of the State of São Paulo) (2014). JUCESP on line. https://www.jucesponline.sp.gov.br/pesquisa.aspx

  • Kelessidis, A., & Stasinakis, A. S. (2012). Comparative study of the methods used for treatment and final disposal of sewage sludge in European countries. Waste Management, 32, 1186–1195. https://doi.org/10.1016/j.wasman.2012.01.012.

    Article  CAS  Google Scholar 

  • Kizinievič, O., Žurauskienė, R., Kizinievič, V., & Žurauskas, R. (2013). Utilisation of sludge waste from water treatment for ceramic product. Construction and Building Materials, 41, 464–473. https://doi.org/10.1016/j.conbuildmat.2012.12.041.

    Article  Google Scholar 

  • Kyncl, M. (2008). Opportunities for water treatment sludge re-use. GeoScience Engineering, LIV, 1, 11–22.

    Google Scholar 

  • Le Blanc, R. J., Matthews, P., & Richard, R. P. (Eds.). (2008). Global Atlas of Excreta, wastewater sludge, and biosolids management: moving forward the sustainable and welcome uses a global resource. Nairobi: United Nations Human Settlements Programme (UN-HABITAT).

    Google Scholar 

  • Liew, A. G., Idris, A., Wong, C. H. K., Samad, A. A., Noor, M. J. M. M., & Baki, A. M. (2004). Incorporation of sewage sludge in clay brick and its characterization. Waste Management & Research, 22(4), 226–233. https://doi.org/10.1177/0734242X04044989.

    Article  CAS  Google Scholar 

  • Lu, Q., He, Z. L., & Stoffella, P. J. (2012). Land application of biosolids in the USA: A review. Applied and Environmental Soil Science., 2012, 1–11. https://doi.org/10.1155/2012/201462.

    Article  Google Scholar 

  • Lucena, L. C. F. L., Juca, J. F. T., Soares, J. B., & Portela, M. G. (2014). Potential uses of sewage sludge in highway construction. Journal of Materials in Civil Engineering, 26(9), 04014051. https://doi.org/10.1061/(ASCE)MT.1943-5533.0000937.

    Article  CAS  Google Scholar 

  • Martínez-García, C., Eliche-Quesada, D., Pérez-Villarejo, L., Iglesias-Godino, F. J., & Corpas-Iglesias, F. A. (2012). Sludge valorization from wastewater treatment plant to its application on the ceramic industry. Journal of Environmental Management, 95, S343–S348. https://doi.org/10.1016/j.jenvman.2011.06.016.

    Article  CAS  Google Scholar 

  • Monteiro, S. N., Alexandre, J., Margem, J. I., Sánchez, R., & Vieira, C. M. F. (2008). Incorporation of sludge waste from water treatment plant into red ceramic. Construction and Building Materials, 22, 1281–1287. https://doi.org/10.1016/j.conbuildmat.2007.01.013.

    Article  Google Scholar 

  • Moreira, R. C. A., Guimarães, R. M., Boaventura, G. R., Momesso, A. M., & Lima, G. L. (2009). Geochemistry of the final disposal of the water treatment residuals on degraded area (in portuguese). Química Nova, 32(8), 2085–2093. https://doi.org/10.1590/S0100-40422009000800019.

    Article  CAS  Google Scholar 

  • Murray, A., Horvath, A., & Nelson, K. L. (2008). Hybrid life-cycle environmental and cost inventory of sewage sludge treatment and end-use scenarios: a case study from China. Environmental Science & Technology, 42, 3163–3169. https://doi.org/10.1021/es702256w.

    Article  CAS  Google Scholar 

  • Oliveira, E. M. S., & Holanda, J. N. F. (2008). Influence of the addition of water treatment sludge on the properties and microstructure of red ceramic (in portuguese). Cerâmica, 54(330), 167–173. https://doi.org/10.1590/S0366-69132008000200006.

    Article  CAS  Google Scholar 

  • Owen, P. (2002). Water-treatment works' sludge management. Journal of the Chartered Institution of Water and Environmental Management, 16, 282–285.

    Article  Google Scholar 

  • Paixão, L. C. C., Yoshimura, H. N., Espinosa, D. C. R., & Tenorio, J. A. S. (2008). Effect of addition of high iron content sludge from water treatment plant on a clay-based ceramic (in portuguese). Cerâmica, 54(329), 63–76. https://doi.org/10.1590/S0366-69132008000100010.

    Article  Google Scholar 

  • Pasda, N., Panichsakpatana, S., Limtong, P., Oliver, R., & Montange, D. (2006). Evaluation of Bangkok sewage sludge for possible agricultural use. Waste Management & Research, 24, 167–174. https://doi.org/10.1177/0734242X06063347.

    Article  CAS  Google Scholar 

  • PCJ Water Agency. (2012). Relatório de manejo da bacia PCJ 2012 (management report of PCJ watershed 2012). Piracicaba, BR: PCJ Water Agency.

    Google Scholar 

  • PCJ Water Agency (2013). SIG PCJ – Geographic Information System of watershed PCJ. From Agency of watershed PCJ: https://sig.agenciapcj.org.br:9083/k2gisapp/map (August 25, 2013).

  • Pires, M. (2004). Watershed protection for a world city: the case of New York. Land Use Policy, 21(2), 161–175. https://doi.org/10.1016/j.landusepol.2003.08.001.

    Article  Google Scholar 

  • Pracidelli, S., & Melchiades, F. G. (1997). Importância da composição granulométrica de massas para a cerâmica vermelha (Particle size composition of the importance of masses for red ceramics). Cerâmica Industrial, 2(1–2), 227–236.

    Google Scholar 

  • Rashid, M. M., Kattou’a, M. G., Al-Khatib, I. A., & Sato, C. (2017). Farmers’ attitude toward treated sludge use in the villages of West Bank, Palestine. Environmental Monitoring and Assessment, 189(7), 1–14. https://doi.org/10.1007/s10661-017-6074-4.

    Article  Google Scholar 

  • Rodrigues, J. A. P., et al. (Eds.). (2012). Panorama da indústria de cerâmica vermelha no Brasil (panorama of the red ceramic industry in Brazil). Rio de Janeiro: INT – Instituto Nacional de Tecnologia.

    Google Scholar 

  • Serenotti, F., Vieira, M. G. A., Silva, M. G. C., Pisani, B., Simões, M., & Prandi, M. A. G. (2010). Bacteriological elimination in sewage sludge through direct flow convective drying. Environmental Progress & Sustainable Energy, 29(4), 406–414. https://doi.org/10.1002/ep.10421.

    Article  CAS  Google Scholar 

  • Sidhu, J. P. S., & Toze, S. G. (2009). Human pathogens and their indicators in biosolids: a literature review. Environment International, 35(1), 187–201. https://doi.org/10.1016/j.envint.2008.07.006.

    Article  Google Scholar 

  • Silva, L. C. F., Canteras, F. B., & Moreira, S. (2014). Analyses of heavy metals in sewage and sludge from treatment plants in the cities of Campinas and Jaguariúna, using synchrotron radiation total reflection X-rayfluorescence. Radiation Physics and Chemistry, 95, 342–345. https://doi.org/10.1016/j.radphyschem.2013.01.025.

    Article  CAS  Google Scholar 

  • Silva, E. M., Morita, D., Lima, A. C. M., & Machado, L. C. G. T. (2015). Manufacturing of ceramic bricks with polyaluminum chloride (PAC) sludge from water treatment plant. Water Science & Technology, 71(11), 1638–1645. https://doi.org/10.2166/wst.2015.132.

    Article  CAS  Google Scholar 

  • Singh, R. P., & Agrawal, M. (2008). Potential benefits and risks of land application of sewage sludge. Waste Management, 28, 347–358. https://doi.org/10.1016/j.wasman.2006.12.010.

    Article  CAS  Google Scholar 

  • Smith, K. M., Fowler, G. D., Pullket, S., & Graham, N. J. D. (2009). Sewage sludge-based adsorbents: A review of their production, properties and use in water treatment applications. Water Research, 43(10), 2569–2594. https://doi.org/10.1016/j.watres.2009.02.038.

    Article  CAS  Google Scholar 

  • Sommaggio, L. R. D., Mazzeo, D. E. C., Sant' Anna, D. A. E. S., Levy, C. E., & Marin-Morales, M. A. (2018). Ecotoxicological and microbiological assessment of sewage sludge associated with sugarcane bagasse. Ecotoxicology and Environmental Safety, 147, 550–557. https://doi.org/10.1016/j.ecoenv.2017.09.009.

    Article  CAS  Google Scholar 

  • Souza, V. P., Toledo, R., Holanda, J. N. F., Vargas, H., & Faria Jr., R. T. (2008). Pollutant gas analysis evolved during firing of red ceramic incorporated with water treatment plant sludge (in portuguese). Cerâmica, 54(331), 351–355. https://doi.org/10.1590/S0366-69132008000300013.

    Article  CAS  Google Scholar 

  • Tartari, R., Diaz-Mora, N., Módenes, A. N., & Pianaro, S. A. (2011a). Generated sludge at water treatment station Tamanduá, Foz do Iguaçu, PR, as additive in red clay for ceramics. Part I: characterization of sludge and clay Paraná third plateau (in portuguese). Cerâmica, 57(343), 288–293. https://doi.org/10.1590/S0366-69132011000300006.

    Article  CAS  Google Scholar 

  • Tartari, R., Diaz-Mora, N., Módenes, A. N., & Pianaro, S. A. (2011b). Sludge generated in the water treatment plant Tamanduá, Foz do Iguaçu, PR, as an additive in red clay for red ceramic. Part II: incorporation of sludge mixed with clay to produce red ceramic (in portuguese). Cerâmica, 57(344), 387–394. https://doi.org/10.1590/S0366-69132011000400003.

    Article  CAS  Google Scholar 

  • Teixeira, S. T., & Melo, W. J. (2007). Plant nutrients in a degraded soil treated with water treatment sludge and cultivated with grasses and leguminous plants. Soil Biology and Biochemistry, 39(6), 1348–1354. https://doi.org/10.1016/j.soilbio.2006.12.011.

    Article  CAS  Google Scholar 

  • Teixeira, S. R., Santos, G. T. A., Souza, A. E., Alessio, P., Souza, S. A., & Souza, N. R. (2011). The effect of incorporation of a Brazilian water treatment plant sludge on the properties of ceramic materials. Applied Clay Science, 53, 561–565. https://doi.org/10.1016/j.clay.2011.05.004.

    Article  CAS  Google Scholar 

  • Urban, R. C., & Isaac, R. L. (2016). Land feasibility map for sewage sludge application: watershed of the Piracicaba, Capivari and Jundiaí Rivers – Brazil. Ambiente e Água – An Interdisciplinary Journal of Applied Science, 11(1), 125–134. https://doi.org/10.4136/ambi-agua.1714.

    Article  Google Scholar 

  • Urban, R.C., Isaac, R.L., Morita, D.M. (in press). Beneficial use of sludge from water and sewage treatment plants: state of the art (in Portuguese). Revista DAE.

  • Vieira, C. M. F., Margem, J. I., & Monteiro, S. N. (2008). Microstructural changes of clayey ceramic incorporated with filter sludge from water treatment plant (in Portuguese). Matéria (Rio J.), 13(2), 275–281. https://doi.org/10.1590/S1517-70762008000200005.

    Article  CAS  Google Scholar 

  • Wolstenholme, R., Dutch, J., Moffat, A. J., Bayes, C. D., & Taylor, C. M. A. (1992). A manual of good practice for the use of sewage sludge in forestry. Forestry Commission Bulletin (p. 107). London: HMSO.

    Google Scholar 

  • Zhao, Y. W., Qin, Y., Chen, B., Zhao, X., Li, Y., Yin, X. A., & Chen, G. Q. (2009). GIS-based optimization for the locations of sewage treatment plants and sewage outfalls - a case study of Nansha District in Guangzhou City, China. Communications in Nonlinear Science and Numerical Simulation, 14, 1746–1757. https://doi.org/10.1016/j.cnsns.2007.12.016.

    Article  Google Scholar 

  • Zhao, Y., Ren, B., O’Brien, A., & O’Toole, S. (2016). Using alum sludge for clay brick: An Irish investigation. International Journal of Environmental Studies, 73(5), 719–730. https://doi.org/10.1080/00207233.2016.1160651.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rodrigo Custodio Urban.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Urban, R.C., Isaac, R.d.L. WTP and WWTP sludge management: a case study in the metropolitan area of Campinas, southeastern Brazil. Environ Monit Assess 190, 584 (2018). https://doi.org/10.1007/s10661-018-6972-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10661-018-6972-0

Keywords

Navigation