Skip to main content

Real-time reservoir operation using data mining techniques

Abstract

The optimal operation of hydropower reservoirs is essential for the planning and efficient management of water resources and the production of hydroelectric energy. Various techniques such as the genetic algorithm (GA), artificial neural networks (ANN), support vector machine (SVM), and dynamic programming (DP) have been employed to calculate reservoir operation rules. This paper implements the data mining techniques SVM and ANN to calculate the optimal release rule of hydropower reservoirs under “forecasting” and “non-forecasting” scenarios. The employment of data mining techniques accounting for data uncertainty to calculate optimal hydropower reservoir operation is novel in the field of water resource systems analysis. The optimal operation of the Karoon 3 reservoir, Iran, serves as a test of the proposed methodology. The upstream streamflow, storage records, and several lagged variables are model inputs. Data obtained from solving the reservoir optimization problem with nonlinear programming (NLP) are applied to train (calibrate) the SVM, and ANN, SVM, and ANN are executed in the “non-forecasting” scenario based on all inputs along with their time-lagged variables. In contrast, current parameters are removed from the set of inputs in the “forecasting” scenario. The results of the SVM model are compared with those of the ANN model with the correlation coefficient (R), the mean error (ME), and the root mean square error (RMSE). This paper’s results indicate performance of the SVM is better than that of the ANN model by 1.5%, 400%, and 10% with respect to the R, ME, and RMSE diagnostic statistics, respectively. In addition, SVM and ANN overcome data uncertainty (“forecasting” scenario) to produce optimal reservoir operation.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

References

  1. Aboutalebi, M., & Bozorg-Haddad, O. (2015). Support vector machine with non-dominated sorting genetic algorithm for the monthly inflow prediction in hydropower reservoir. International Journal of Civil and Structural Engineering, 2(1), 239–242.

    Google Scholar 

  2. Aboutalebi, M., Bozorg-Haddad, O., & Loáiciga, H. A. (2015). Optimal monthly reservoir operation rules for hydropower generation derived with SVR-NSGAII. Journal of Water Resources Planning and Management, 141(11). https://doi.org/10.1061/(ASCE)WR.1943-5452.0000553.

    Article  Google Scholar 

  3. Aboutalebi, M., Bozorg-Haddad, O., & Loáiciga, H. A. (2016a). Application of the SVR-NSGAII to hydrograph routing in open channels. Journal of Irrigation and Drainage Engineering, 142(3). https://doi.org/10.1061/(ASCE)IR.1943-4774.0000969.

    Article  Google Scholar 

  4. Aboutalebi, M., Bozorg-Haddad, O., and Loáiciga, H.A., (2016b). Multi-objective design of water-quality monitoring networks in river-reservoir systems. Journal of Environmental Engineering, 04016070. https://doi.org/10.1061/(ASCE)EE.1943-7870.0001155.

    Article  Google Scholar 

  5. Aboutalebi, M., Bozorg-Haddad, O., & Loáiciga, H. A. (2016c). Simulation of methyl tertiary butyl ether (MTBE) concentrations in river-reservoir systems using support vector regression (SVR). Journal of Irrigation and Drainage Engineering, 142(6). https://doi.org/10.1061/(ASCE)IR.1943-4774.0001007.

    Article  Google Scholar 

  6. Ahmadi, A., Han, D., Kakaei-Lafdani, E., & Moridi, A. (2015a). Input selection for long-lead precipitation prediction using large-scale climate variables: a case study. Journal of Hydroinformatics, 17(1), 114–129. https://doi.org/10.2166/hydro.2014.138.

    Article  Google Scholar 

  7. Ahmadi, M., Bozorg-Haddad, O., & Loáiciga, H. A. (2015b). Adaptive reservoir operation rules under climatic change. Water Resources Management, 29(4), 1247–1266.

    Article  Google Scholar 

  8. Akbari-Alashti, H., Bozorg-Haddad, O., Fallah-Mehdipour, E., & Mariño, M. A. (2014). Multi-reservoir real-time operation rules: a new genetic programming approach. Proceedings of the Institution of Civil Engineers: Water Management, 167(10), 561–576.

    Google Scholar 

  9. Asefa, T., Kemblowski, M., Urroz, G., McKee, M., & Khalil, A. (2005). Support vector machines (SVMs) for monitoring networks design. Groundwater, 43(4), 413–422.

    CAS  Article  Google Scholar 

  10. Asefa, T., Kemblowski, M., McKee, M., & Khalil, A. (2006). Multi-time scale stream flow predictions: the support vector machines approach. Journal of Hydrology, 318(1–4), 7–16.

    Article  Google Scholar 

  11. Babovic, V. (2004). Data mining in hydrology. Hydrological Processes, 19(7), 1511–1515.

    Article  Google Scholar 

  12. Behzad, M., Asghari, K., Eazi, M., & Palhang, M. (2009). Generalization performance of support vector machines and neural networks in runoff modeling. Expert Systems with Applications, 36(4), 7624–7629.

    Article  Google Scholar 

  13. Beygi, S., Bozorg-Haddad, O., Fallah-Mehdipour, E., & Mariño, M. A. (2014). Bargaining models for optimal design of water distribution networks. Journal of Water Resources Planning and Management, 140(1), 92–99.

    Article  Google Scholar 

  14. Bolouri-Yazdeli, Y., Bozorg-Haddad, O., Fallah-Mehdipour, E., & Mariño, M. A. (2014). Evaluation of real-time operation rules in reservoir systems operation. Water Resources Management, 28(3), 715–729.

    Article  Google Scholar 

  15. Bower, B. T., Hufschmidt, M. M., & Reedy, W. W. (1962). Operating procedures: their role in the design of water- resource systems by simulation analyses. Design of water resources systems (pp. 443–458). Cambridge: Harvard University Press.

    Google Scholar 

  16. Box, G. E. P., & Cox, D. R. (1964). An analysis of transformation. Journal of the Royal Statistical Society, 26(2), 211–252.

    Google Scholar 

  17. Bozorg-Haddad, O., Afshar, A., & Mariño, M. A. (2008a). Design-operation of multi-hydropower reservoirs: HBMO approach. Water Resources Management, 22(12), 1709–1722.

    Article  Google Scholar 

  18. Bozorg-Haddad, O., Afshar, A., & Mariño, M. A. (2008b). Honey-bee mating optimization (HBMO) algorithm in deriving optimal operation rules for reservoirs. Journal of Hydroinformatics, 10(3), 257–264.

    Article  Google Scholar 

  19. Bozorg-Haddad, O., Rezapour Tabari, M. M., Fallah-Mehdipour, E., & Mariño, M. A. (2013). Groundwater model calibration by meta-heuristic algorithms. Water Resources Management, 27(7), 2515–2529.

    Article  Google Scholar 

  20. Bozorg-Haddad, O., Ashofteh, P.-S., and Mariño, M.A. (2015a). Levee layouts and design optimization in protection of flood areas. Journal of Irrigation and Drainage Engineering, 04015004. https://doi.org/10.1061/(ASCE)IR.1943-4774.0000864.

    Article  Google Scholar 

  21. Bozorg-Haddad, O., Ashofteh, P.-S., Ali-Hamzeh, M., & Mariño, M. A. (2015b). Investigation of reservoir qualitative behavior resulting from biological pollutant sudden entry. Journal of Irrigation and Drainage Engineering, 141(8), 04015003. https://doi.org/10.1061/(ASCE)IR.1943-4774.0000865.

    Article  Google Scholar 

  22. Cai, X., Mckinney, D. C., & Lasdon, L. S. (2001). Solving nonlinear water management models using a combined genetic algorithm and linear programming approach. Advances in Water Resources, 24(6), 667–676.

    Article  Google Scholar 

  23. Chen, L. (2003). Real coded genetic algorithm optimization of long term reservoir operation. Journal of American Water Resources Association, 39(5), 1157–1165.

    Article  Google Scholar 

  24. Cristianini, N., & Shawe-Taylor, J. (2000). An introduction to support vector machines. New York: Cambridge University Press.

    Google Scholar 

  25. Dibike, Y. B., Velickov, S., Solomatine, D. P., & Abbott, M. B. (2001). Model induction with support vector machines: introduction and application. Journal of Computing in Civil Engineering, 15(3), 208–216.

    Article  Google Scholar 

  26. Fallah-Mehdipour, E., Bozorg-Haddad, O., Orouji, H., & Mariño, M. A. (2013a). Application of genetic programming in stage hydrograph routing of open channels. Water Resources Management, 27(9), 3261–3272.

    Article  Google Scholar 

  27. Fallah-Mehdipour, E., Bozorg-Haddad, O., & Mariño, M. A. (2013b). Extraction of optimal operation rules in aquifer-dam system: a genetic programming approach. Journal of Irrigation and Drainage Engineering, 139(10), 872–879.

    Article  Google Scholar 

  28. Fallah-Mehdipour, E., Bozorg-Haddad, O., & Mariño, M. A. (2014). Genetic programming in groundwater modeling. Journal of Hydrologic Engineering, 19(12), 04014031. https://doi.org/10.1061/(ASCE)HE.1943-5584.0000987.

    Article  Google Scholar 

  29. Farhangi, M., Bozorg-Haddad, O., & Mariño, M. A. (2012). Evaluation of simulation and optimization models for WRP with performance indices. Proceedings of the Institution of Civil Engineers: Water Management, 165(5), 265–276.

    Google Scholar 

  30. Garousi-Nejad, I., & Bozorg-Haddad, O. (2015). The implementation of developed firefly algorithm in multireservoir optimization in continous domain. International Journal of Civil and Structural Engineering, 2(1), 104–108.

    Google Scholar 

  31. Garousi-Nejad, I., Bozorg-Haddad, O., Loáiciga, H.A., and Mariño, M.A. (2016a). Application of the firefly algorithm to optimal operation of reservoirs with the purpose of irrigation supply and hydropower production. Journal of Irrigation and Drainage Engineering, 04016041. https://doi.org/10.1061/(ASCE)IR.1943-4774.0001064.

    Article  Google Scholar 

  32. Garousi-Nejad, I., Bozorg-Haddad, O., & Loáiciga, H. A. (2016b). Modified firefly algorithm for solving multireservoir operation in continuous and discrete domains. Journal of Water Resources Planning and Management, 04016029. https://doi.org/10.1061/(ASCE)WR.1943-5452.0000644.

    Article  Google Scholar 

  33. Han, D. and Cluckie, I. (2004). Support vector machines identification for runoff modeling. Proceedings of the Sixth International Conference on Hydroinformatics, 21–24 June, Singapore.

  34. Jahandideh-Tehrani, M., Bozorg-Haddad, O., & Mariño, M. A. (2015). Hydropower reservoir management under climate change: the Karoon reservoir system. Water Resources Management, 29(3), 749–770.

    Article  Google Scholar 

  35. Khalil, A., Almasri, M. N., McKee, M., & Kaluarachchi, J. J. (2005). Applicability of statistical learning algorithms in ground water quality modeling. Water Resources Research, 41(5), W0510. https://doi.org/10.1029/2004WR003608.

    CAS  Article  Google Scholar 

  36. Li, X.-L., Lü, H., Horton, R., An, T., & Yu, Z. (2014). Real-time flood forecast using the coupling support vector machine and data assimilation method. Journal of Hydroinformatics, 16(5), 973–988. https://doi.org/10.2166/hydro.2013.075.

    Article  Google Scholar 

  37. Lin, J.-Y., Cheng, C.-T., & Chau, K.-W. (2006). Using support vector machines for long-term discharge prediction. Hydrological Sciences Journal, 51(4), 599–612.

    Article  Google Scholar 

  38. Loáiciga, H. A. (2015). Managing municipal water supply and use in water-starved regions: looking ahead. Journal of Water Resources Planning and Management, 141(1), 01814003/1–01814003/4.

    Article  Google Scholar 

  39. Loucks, D. P., Stedinger, J. R., & Haith, D. A. (1981). Water resource systems planning and analysis. Englewood Cliffs: Prentice-Hall.

    Google Scholar 

  40. Mousavi, S. J., Ponnambalam, k., & Karray, F. (2007). Inferring operating rules for reservoir operations using fuzzy regression and ANFIS. Fuzzy Sets and Systems, 158(10), 1064–1082.

    Article  Google Scholar 

  41. Oliveira, R., & Loucks, D. P. (1997). Operating rules for multireservoir systems. Water Resources Research, 33(4), 839–852.

    Article  Google Scholar 

  42. Orouji, H., Bozorg-Haddad, O., Fallah-Mehdipour, E., & Mariño, M. A. (2013). Modeling of water quality parameters using data-driven models. Journal of Environmental Engineering, 139(7), 947–957.

    CAS  Article  Google Scholar 

  43. Orouji, H., Bozorg-Haddad, O., Fallah-Mehdipour, E., & Mariño, M. A. (2014a). Flood routing in branched river by genetic programming. Proceedings of the Institution of Civil Engineers: Water Management, 167(2), 115–123.

    Google Scholar 

  44. Orouji, H., Bozorg-Haddad, O., Fallah-Mehdipour, E., & Mariño, M. A. (2014b). Extraction of decision alternatives in project management: Application of hybrid PSO-SFLA. Journal of Management in Engineering, 30(1), 50–59.

    Article  Google Scholar 

  45. Pinthong, P., Gupta, D., Babel, A., & Weesakul, S. (2009). Improved reservoir operation using hybrid genetic algorithm and neurofuzzy computing. Water Resources Management, 23(4), 697–720.

    Article  Google Scholar 

  46. Rakotomalala, R. (2005). TANAGRA: a free software for research and academic purposes. In Proceedings of EGC’2005, RNTI-E-3, 2, pp. 697–702.

  47. Singh, K. P., Basant, N., & Gupta, S. (2011). Support vector machines in water quality management. Analytica Chimica Acta, 703(2), 152–162.

    CAS  Article  Google Scholar 

  48. Tung, C., Hsu, S., Liu, C. M., & Li Jr., S. (2003). Application of the genetic algorithm for optimizing operation rules of the Liyutan reservoir in Taiwan. Journal of American Water Resources Association, 39(3), 649–657.

    Article  Google Scholar 

  49. Vapnik, V. N. (1995). The nature of statistical learning theory. New York: Springer-Verlag.

    Book  Google Scholar 

  50. Wang, W.-c., Xu, D.-m., Chau, K.-w., & Chen, S. (2013). Improved annual rainfall-runoff forecasting using PSO-SVM model based on EEMD. Journal of Hydroinformatics, 15(4), 1377–1390. https://doi.org/10.2166/hydro.2013.134.

    Article  Google Scholar 

  51. Wei, C. (2012). Wavelet kernel support vector machines forecasting techniques: case study on water-level predictions during typhoons. Expert Systems with Applications, 39(5), 5189–5199.

    Article  Google Scholar 

  52. Yang, T., Gao, X., Sorooshian, S., & Li, X. (2016). Simulating California reservoir operation using the classification and regression-tree algorithm combined with a shuffled cross-validation scheme. Water Resources Research, 52(3), 1626–1651.

    Article  Google Scholar 

  53. Yang, T., Asanjian, A., Welles, E., Gao, X., Sorooshian, S., & Liu, X. (2017). Developing reservoir monthly inflow forecasts using artificial intelligence and climate phenomenon information. Water Resources Research, 53(4), 2786–2812.

    Article  Google Scholar 

  54. Yeh, W. W. G. (1985). Reservoir management and operations models: a state of the art review. Water Resources Research, 21(12), 1797–1818.

    Article  Google Scholar 

  55. Yoon, H., Jun, S., Hyun, H., Bae, G., & Lee, K. (2011). A comparative study of artificial neural networks and support vector machines for predicting groundwater levels in a coastal aquifer. Journal of Hydrology, 39(6), 128–138.

    Article  Google Scholar 

  56. Yu, X., Liong, S., & Babovic, V. (2004). EC-SVM approach for real-time hydrologic forecasting. Journal of Hydroinformatics, 6(3), 209–223.

    Article  Google Scholar 

  57. Yu, P.-S., Chen, S.-T., & Chang, I.-F. (2006). Support vector regression for real-time flood stage forecasting. Journal of Hydrology, 328(3–4), 704–716.

    Article  Google Scholar 

Download references

Acknowledgments

The authors thank Iran’s National Science Foundation (INSF) for its financial support of this research.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Omid Bozorg-Haddad.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Bozorg-Haddad, O., Aboutalebi, M., Ashofteh, PS. et al. Real-time reservoir operation using data mining techniques. Environ Monit Assess 190, 594 (2018). https://doi.org/10.1007/s10661-018-6970-2

Download citation

Keywords

  • Real-time reservoir operation
  • Hydropower
  • Rule curve
  • Support vector machine
  • Artificial neural network