Skip to main content

Advertisement

Log in

Temperature leads to annual changes of plant community composition in alpine grasslands on the Qinghai-Tibetan Plateau

  • Published:
Environmental Monitoring and Assessment Aims and scope Submit manuscript

Abstract

In most grassland ecosystems, the effects of mean temperature increase on plant communities have been investigated; however, the effects of climate fluctuations on local plant community metrics are much less well understood. We conducted a nine-year survey in alpine meadow and alpine steppe to investigate the effects of inter-annual temperature and precipitation variation on plant community composition, species richness, and species diversity on the central Qinghai-Tibetan Plateau, China. We unexpectedly found that annual variability of growing season temperature, and not precipitation, is a driver of plant composition and species diversity in both habitats. Generally, increasing temperature had a negative effect on species diversity in meadow (r2 = 0.94) and steppe (r2 = 0.95). In the meadow habitat, the proportion of grass decreased with increasing temperature and ultimately had positive impacts on the proportion of sedges. In steppe habitat, legumes increased and forbs decreased with the increase of growing season temperature; both legumes and forbs negatively affected proportion of grass and resulted in grass remaining stable under temperature change. Our results provide evidence that responses of functional group composition and species richness to temporal change of temperature are very different from those responses to mean temperature increase on the central Qinghai-Tibetan Plateau. In our results, temperature is a main regulator for annual variation of functional group composition and species richness, while soil water content is a dominant regulator for community responses in other experimental warming studies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Adler, P. B., Dalgleish, H. J., & Ellner, S. P. (2012). Forecasting plant community impacts of climate variability and change: when do competitive interactions matter? Journal of Ecology, 100, 478–487.

    Article  Google Scholar 

  • Chen, H., Zhu, Q., Peng, C., Wu, N., Wang, Y., Fang, X., Gao, Y., Zhu, D., Yang, G., et al. (2013). The impacts of climate change and human activities on biogeochemical cycles on the Qinghai-Tibetan Plateau. Global Change Biology, 19, 2940–2955.

    Article  Google Scholar 

  • Cleland, E. E., Collins, S. L., Dickson, T. L., Farrer, E. C., Gross, K. L., Gherardi, L. A., Hallett, L., Hobbs, R. J., Hsu, J. S., Turnbull, L., & Suding, K. N. (2013). Sensitivity of grassland plant community composition to spatial vs. temporal variation in precipitation. Ecology, 94, 1687–1696.

    Article  Google Scholar 

  • Dawson, T. P., Jackson, S. T., House, J. I., Prentice, I. C., & Mace, G. M. (2011). Beyond predictions: biodiversity conservation in a changing climate. Science, 332, 53–58.

    Article  CAS  Google Scholar 

  • del Río, M., Pretzsch, H., Ruíz-Peinado, R., Ampoorter, E., Annighöfer, P., Barbeito, I., Bielak, K., Brazaitis, G., Coll, L., et al. (2017). Species interactions increase the temporal stability of community productivity in Pinus sylvestrisFagus sylvatica mixtures across Europe. Journal of Ecology, 105, 1032–1043.

    Article  Google Scholar 

  • Dieleman, C. M., Branfireun, B. A., Mclaughlin, J. W., & Lindo, Z. (2015). Climate change drives a shift in peatland ecosystem plant community: implications for ecosystem function and stability. Global Change Biology, 21, 388–395.

    Article  Google Scholar 

  • Galvagno, M., Wohlfahrt, G., Cremonese, E., Rossini, M., Colombo, R., Filippa, G., Julitta, T., Manca, G., Siniscalco, C., Morra di Cella, U., & Migliavacca, M. (2013). Phenology and carbon dioxide source/sink strength of a subalpine grassland in response to an exceptionally short snow season. Environmental Research Letters, 8, 025008.

    Article  CAS  Google Scholar 

  • Ganjurjav, H., Gao, Q., Gornish, E. S., Schwartz, M. W., Liang, Y., Cao, X., Zhang, W., Zhang, Y., Li, W., et al. (2016). Differential response of alpine steppe and alpine meadow to climate warming in the central Qinghai–Tibetan Plateau. Agricultural and Forest Meteorology, 223, 233–240.

    Article  Google Scholar 

  • Gao, Q. Z., Ganjurjav, L.,. Y., Wan, Y. F., Zhang, W. N., & Borjigdai, A. (2013). Challenges in disentangling the influence of climatic and socio-economic factors on alpine grassland ecosystems in the source area of Asian major rivers. Quaternary International, 304, 126–132.

    Article  Google Scholar 

  • Gruner, D. S., Bracken, M. E. S., Berger, S. A., Eriksson, B. K., Gamfeldt, L., Matthiessen, B., Moorthi, S., Sommer, U., & Hillebrand, H. (2017). Effects of experimental warming on biodiversity depend on ecosystem type and local species composition. Oikos, 126, 8–17.

    Article  Google Scholar 

  • Harrison, S. P., Gornish, E. S., & Copeland, S. (2015). Climate-driven diversity loss in a grassland community. Proceedings of the National Academy of Sciences of the United States of America, 112, 8672–8627.

    Article  CAS  Google Scholar 

  • Hautier, Y., Tilman, D., Isbell, F., Seabloom, E. W., Borer, E. T., & Reich, P. B. (2015). Anthropogenic environmental changes affect ecosystem stability via biodiversity. Science, 348, 336–340.

    Article  CAS  Google Scholar 

  • Hu, L., & Bentler, P. M. (1999). Cutoff criteria for fit indexes in covariance structure analysis: Conventional criteria versus new alternatives. Structural Equation Modeling, 6, 1–55.

    Article  Google Scholar 

  • Jonas, J. L., Buhl, D. A., & Symstad, A. J. (2015). Impacts of weather on long-term patterns of plant richness and diversity vary with location and management. Ecology, 96, 2417–2432.

    Article  Google Scholar 

  • Klein, J. A., Harte, J., & Zhao, X. Q. (2008). Decline in medicinal and forage species with warming is mediated by plant traits on the Tibetan Plateau. Ecosystems, 11, 775–789.

    Article  Google Scholar 

  • Li, G., Liu, Y., Frelich, L. E., & Sun, S. (2011). Experimental warming induces degradation of a Tibetan alpine meadow through trophic interactions. Journal of Applied Ecology, 48, 659–667.

    Article  Google Scholar 

  • Li, Z., Ma, W., Liang, C., Liu, Z., Wang, W., & Wang, L. (2015). Long-term vegetation dynamics driven by climatic variations in the Inner Mongolia grassland: Findings from 30-year monitoring. Landscape Ecology, 30, 1701–1711.

    Article  Google Scholar 

  • Li, X., Jiang, L., Meng, F., Wang, S., Niu, H., Iler, A. M., Duan, J., Zhang, Z., Luo, C., Cui, S., Zhang, L., Li, Y., Wang, Q., Zhou, Y., Bao, X., Dorji, T., Li, Y., Peñuelas, J., du, M., Zhao, X., Zhao, L., & Wang, G. (2016). Responses of sequential and hierarchical phenological events to warming and cooling in alpine meadows. Nature Communications, 7, 12489.

    Article  CAS  Google Scholar 

  • Liu, S., Zhao, H., Su, X., Dong, S., Deng, L., & Zhang, X. (2015). Spatio-temporal variability in rangeland conditions associated with climate change in the Altun Mountain National Nature Reserve on the Qinghai-Tibet Plateau over the past 15 years. The Rangeland Journal, 37, 67–75.

    Article  CAS  Google Scholar 

  • Liu, X., Zhu, X., Pan, Y., Zhu, W., Zhang, J., & Zhang, D. (2016). Thermal growing season and response of alpine grassland to climate variability across the three-rivers headwater region, China. Agricultural and Forest Meteorology, 220, 30–37.

    Article  Google Scholar 

  • Loreau, M., & Mazancourt, C. (2013). Biodiversity and ecosystem stability: A synthesis of underlying mechanisms. Ecology Letters, 16, 106–115.

    Article  Google Scholar 

  • Meng, F. D., Jiang, L. L., Zhang, Z. H., Cui, S. J., Duan, J. C., Wang, S. P., Luo, C. Y., Wang, Q., Zhou, Y., et al. (2017). Changes in flowering functional group affect responses of community phenological sequences to temperature change. Ecology, 98, 734–740.

    Article  CAS  Google Scholar 

  • Mokany, K., Ferrier, S., Connolly, S. R., Dunstan, P. K., Fulton, E. A., Harfoot, M. B., Harwood, T. D., Richardson, A. J., Roxburgh, S. H., et al. (2016). Integrating modelling of biodiversity composition and ecosystem function. Oikos, 125, 10–19.

    Article  Google Scholar 

  • Moles, A. T., Perkins, S. E., Laffan, S. W., Flores-Moreno, H., Awasthy, M., Tindall, M. L., Sack, L., Pitman, A., Kattge, J., et al. (2014). Which is a better predictor of plant traits: Temperature or precipitation? Journal of Vegetation Science, 25, 1167–1180.

    Article  Google Scholar 

  • Mulder, C. P., Iles, D. T., & Rockwell, R. F. (2017). Increased variance in temperature and lag effects alter phenological responses to rapid warming in a subarctic plant community. Global Change Biology, 23, 801–814.

    Article  Google Scholar 

  • Oliver, T. H., Isaac, N. J. B., August, T. A., Woodcock, B. A., Roy, D. B., & Bullock, J. M. (2015). Declining resilience of ecosystem functions under biodiversity loss. Nature Communications, 6, 10122.

    Article  CAS  Google Scholar 

  • Olsen, S. L., & Klanderud, K. (2014). Biotic interactions limit species richness in an alpine plant community, especially under experimental warming. Oikos, 123, 71–78.

    Article  Google Scholar 

  • Peng, F., Xue, X., Xu, M., You, Q., Guo, J., & Ma, S. (2017). Warming-induced shift towards forbs and grasses and its relation to the carbon sequestration in an alpine meadow. Environmental Research Letters, 12, 044010.

    Article  CAS  Google Scholar 

  • Qiu, J. (2008). China: The third pole. Nature, 454, 393–396.

    Article  CAS  Google Scholar 

  • R Development Core Team. (2012). R: A language and environment for statistical computing. Vienna: R Foundation for Statistical Computing.

    Google Scholar 

  • Seddon, A. W. R., Macias-Fauria, M., Long, P. R., Benz, D., & Willis, K. J. (2016). Sensitivity of global terrestrial ecosystems to climate variability. Nature, 531, 229–232.

    Article  CAS  Google Scholar 

  • Shi, Z., Sherry, R., Xu, X., Hararuk, O., Souza, L., Jiang, L., Xia, J., Liang, J., & Luo, Y. (2015). Evidence for long-term shift in plant community composition under decadal experimental warming. Journal of Ecology, 103, 1131–1140.

    Article  Google Scholar 

  • Thornton, P. K., Ericksen, P. J., Herrero, M., & Challinor, A. J. (2014). Climate variability and vulnerability to climate change: A review. Global Change Biology, 20, 3313–3328.

    Article  Google Scholar 

  • Wang, S., Duan, J., Xu, G., Wang, Y., Zhang, Z., Rui, Y., Luo, C., Xu, B., Zhu, X., et al. (2012). Effects of warming and grazing on soil N availability, species composition, and ANPP in an alpine meadow. Ecology, 93, 2365–2376.

    Article  Google Scholar 

  • Wu, J., Zhang, X., Shen, Z., Shi, P., Yu, C., Song, M., & Li, X. (2012). Species richness and diversity of alpine grasslands on the northern Tibetan plateau: Effects of grazing exclusion and growing season precipitation. Journal of Resources and Ecology, 3, 236–242.

    Google Scholar 

  • Xia, Y., Moore, D. I., Collins, S. L., & Muldavin, E. H. (2010). Aboveground production and species richness of annuals in chihuahuan desert grassland and shrubland plant communities. Journal of Arid Environment, 74, 378–385.

    Article  Google Scholar 

  • Yan, H., Liang, C., Li, Z., Liu, Z., Miao, B., He, C., & Sheng, L. (2015). Impact of precipitation patterns on biomass and species richness of annuals in a dry steppe. PLoS One, 10, e0125300.

    Article  CAS  Google Scholar 

  • Yang, Z., Zhang, Q., Su, F., Zhang, C., Pu, Z., Xia, J., Wan, S., & Jiang, L. (2017). Daytime warming lowers community temporal stability by reducing the abundance of dominant, stable species. Global Change Biology, 23, 154–163.

    Article  Google Scholar 

  • Ye, J., Reynolds, J. F., Sun, G., & Li, F. (2013). Impacts of increased variability in precipitation and air temperature on net primary productivity of the Tibetan Plateau: A modeling analysis. Climatic Change, 119, 321–332.

    Article  Google Scholar 

  • Zhang, Y., Gao, Q., Dong, S., Sherman, R., Wang, X., Li, Y., et al. (2015). Effects of grazing and climate warming on plant diversity, productivity and living state in the alpine rangelands and cultivated grasslands of the Qinghai-Tibetan Plateau. Rangeland Journal, 37, 57–65.

    Article  Google Scholar 

Download references

Funding

We gratefully acknowledge the financial support from the National Key R&D Program of China (2016YFC0502003) and the Science and Technology Program in Tibet Autonomous Region.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qingzhu Gao.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ganjurjav, H., Gornish, E.S., Hu, G. et al. Temperature leads to annual changes of plant community composition in alpine grasslands on the Qinghai-Tibetan Plateau. Environ Monit Assess 190, 585 (2018). https://doi.org/10.1007/s10661-018-6964-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10661-018-6964-0

Keywords

Navigation