Skip to main content
Log in

Corn cob silica as an antibacterial support for silver nanoparticles: efficacy on Escherichia coli and Listeria monocytogenes

  • Published:
Environmental Monitoring and Assessment Aims and scope Submit manuscript

Abstract

There is great potential to combine bioresource and recycled materials with nanotechnology for industrial and environmental applications. In a novel approach, silver (Ag) nanoparticles (Ag NPs) were imbedded on amine-functionalized silica obtained from corn cob (ACCS) to produce a composite material that can be used to inactivate bacteria. Transmission electron microscope (TEM) images show near-uniform ACCS particles (34.7 ± 8.6 nm diameter), with Ag NPs (5–10 nm diameter) homogenously dispersed on the surfaces. The potential of ACCS-Ag NPs to rapidly inactivate gram-negative Escherichia coli ATCC 8739 and gram-positive Listeria monocytogenes was investigated. A four-log (> 99.99%) inactivation of the E. coli was achieved within 30 min with 4 mg of ACCS-Ag NPs in a 40-mL PBS suspension (1 × 105 CFU/mL). Extended exposure of ACCS-Ag NP may be required to inactivate L. monocytogenes, suggesting the ACCS-Ag NP composite will be less practical for gram-positive bacteria due to thick cell wall and alternative formulations may need to be developed. Result shows that the potential of corn cob silica as an alternative, eco-friendly support matrix for applications such as bacterial inactivation. The Ag-imbedded, amine-functionalized corn cob silica demonstrates how bio-waste can be combined with nanotechnology to produce useful materials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Akhavan, O. (2009). Lasting antibacterial activities of Ag–TiO2/Ag/a-TiO2 nanocomposite thin film photocatalysts under solar light irradiation. Journal of Colloid and Interface Science, 336, 117–124.

    Article  CAS  Google Scholar 

  • Aymonier, C., Schlotterbeck, U., Antonietti, L., Zacharias, P., Thomann, R., Joerg C. Tiller, J. C., Mecking, S. (2002). Hybrids of silver nanoparticles with amphiphilic hyperbranched macromolecules exhibiting antimicrobial properties. Chemical communication, 3018–3019.

  • Bandyopadhyaya, R., Sivaiah, M. V., & Shankar, P. A. (2008). Silver-embedded granular activated carbon as an antibacterial medium for water purification. Journal of Chemical Technology & Biotechnology, 83, 1177–1180.

    Article  CAS  Google Scholar 

  • Cho, K. H., Park, J. E., Osaka, T., & Park, S. G. (2005a). The study of antimicrobial activity and preservative effects of nano silver ingredient. Electrochimica Acta, 51, 956–960.

    Article  CAS  Google Scholar 

  • Cho, M., Chung, H., Choi, W., & Yoon, J. (2005b). Different inactivation behaviors of MS-2 phage and Escherichia coli in TiO2 photocatalytic disinfection. Applied and Environmental Microbiology, 71, 270–275.

    Article  CAS  Google Scholar 

  • Das, P., Xenopoulos, M. A., & Metcalfe, C. D. (2013). Toxicity of silver and titanium dioxide nanoparticle suspensions to the aquatic invertebrate, Daphnia magna. Bulletin of Environmental Contamination Toxicology, 91, 76–82.

    Article  CAS  Google Scholar 

  • Demirbas, A., Yilmaz, V., Ildiz, N., Baldemir, A., & Ocsoy, I. (2017). Anthocyanins-rich berry extracts directed formation of Ag NPs with the investigation of their antioxidant and antimicrobial activities. Journal of Molecular Liquids, 248, 1044–1049.

    Article  CAS  Google Scholar 

  • Fayaz, A. M., Balaji, K., Girilal, M., Yadav, R., Kalaichelvan, P. T., & Venketesan, R. (2010). Biogenic synthesis of silver nanoparticles and their synergistic effect with antibiotics: a study against gram-positive and gram-negative bacteria. Nanomedicine: Nanotechnology, Biology and Medicine, 6(1), 103–109.

    Article  CAS  Google Scholar 

  • Feng, Q. L., Wu, J., Chen, G. Q., Cui, F. Z., Kim, T. N., & Kim, J. O. (2000). A mechanistic study of the antibacterial effect of silver ions on Escherichia coli and Staphylococcus aureus. Journal of Biomedical Materials Research, 52, 662–668.

    Article  CAS  Google Scholar 

  • Galeano, B., Korff, E., & Nicholson, W. L. (2003). Inactivation of vegetative cells, but not spores, of Bacillus anthracis, B. cereus, and B. subtilis on stainless steel surfaces coated with an antimicrobial silver- and zinc-containing zeolite formulation. Applied and Environmental Microbiology, 69(7), 4329–4331.

    Article  CAS  Google Scholar 

  • Gnana Kumar, G., Karunagaran, B., Nahm, K., & Nimma Elizabeth, R. (2009). Nanometer sized silver particles embedded silica particles—spray method. Nanoscale Research Letters, 4, 452–458.

    Article  CAS  Google Scholar 

  • Gogoi, A., Biswas, S., Bora, J., Bhattacharya, S. S., & Kumar, M. (2015). Effect of vermicomposting on copper and zinc removal in activated sludge with special emphasis on temporal variation. Ecohydrology Hydrobiology., 15, 101–107.

    Article  Google Scholar 

  • Gu, H., Ho, P. L., Tong, E., Wang, L., & Xu, B. (2003). Presenting vancomycin on nanoparticles to enhance antimicrobial activities. Nano Letters, 3(9), 1261–1263.

    Article  CAS  Google Scholar 

  • He, D., Ikeda-Ohno, A., Boland, D. D., & Waite, T. D. (2013). Synthesis and characterization of antibacterial silver nanoparticle-impregnated rice husks and rice husk ash. Environmental Science and Technology, 47, 5276–5284.

    Article  CAS  Google Scholar 

  • Huang, R. S., Hou, B. F., Li, H. T., Fu, X. C., & Xie, C. G. (2015). Preparation of silver nanoparticles supported mesoporous silica microspheres with perpendicularly aligned mesopore channels and their antibacterial activities. RSC Advances, 5(75), 61184–61190.

    Article  CAS  Google Scholar 

  • Jeon, H. J., Yi, S. C., & Oh, S. G. (2003). Preparation and antibacterial effects of Ag-SiO2 thin films by sol-gel method. Biometerials, 24(27), 4921–4928.

    Article  CAS  Google Scholar 

  • Jung, W. K., Koo, H. C., Kim, K. W., Shin, S., Kim, S. H., & Park, Y. H. (2008). Antibacterial activity and mechanism of action of the silver ion in Staphylococcus aureus and Escherichia coli. Applied and Environmental Microbiology, 74(7), 2171–2178.

    Article  CAS  Google Scholar 

  • Kalaivani, R., Maruthupandy, M., Muneeswaran, T., Beevi, A. H., Anand, M., Ramakritinan, C. M., & Kumaraguru, A. K. (2018). Synthesis of chitosan mediated silver nanoparticles (Ag NPs) for potential antimicrobial applications. Frontiers in Laboratory Medicine, 2(1), 30–35.

    Article  Google Scholar 

  • Kalapathy, U., Proctor, A., & Shultz, J. (2000). A simple method for production of pure silica from rice hull ash. Bioresource Technology, 73, 257–262.

    Article  CAS  Google Scholar 

  • Kim, J. S., Kuk, E., Yu, K. N., Kim, J. H., Park, S. J., Lee, H. J., Kim, S. H., Park, Y. K., Park, Y. H., Hwang, C. Y., Kim, Y. K., Lee, Y. S., Jeong, D. H., & Cho, M. H. (2007). Antimicrobial effects of silver nanoparticles. Nanomedicine: Nanotechnology, Biology and Medicine, 3(1), 95–101.

    Article  CAS  Google Scholar 

  • Kim, J. Y., Lee, C., Cho, M., & Yoon, J. (2008). Enhanced inactivation of E. coli and MS-2 phage by silver ions combined with UV-A and visible light irradiation. Water Research, 42, 356–362.

    Article  CAS  Google Scholar 

  • Krishnani, K. K., Zhang, Y., Xiong, L., Yan, Y., Boopathy, R., & Mulchandani, A. (2012). Bactericidal and ammonia removal activity of silver ion-exchanged zeolite. Bioresource Technology, 117, 86–91.

    Article  CAS  Google Scholar 

  • Kubo, A. L., Capjak, I., Vrček, I. V., Bondarenko, O. M., Kurvet, I., Vija, H., Ivask, A., Kasemets, K., & Kahru, A. (2018). Antimicrobial potency of differently coated 10 and 50 nm silver nanoparticles against clinically relevant bacteria Escherichia coli and Staphylococcus aureus. Colloids and Surfaces B: Biointerfaces, 170, 401–410.

    Article  CAS  Google Scholar 

  • Kumar, M., Chidambaram, S., Ramanathan, AL., Goswami, R., & Eslamian, S (2015) Criterion, indices, and classification of water quality and water reuse options. Urban Water Reuse Handbook, 163–176.

  • Kunst, S. R., Beltrami, L. V. R., Cardoso, H. R. P., Veja, M. R. O. V., Baldin, E. K. K., Menezes, T. L. M., & Malfatti, C. D. F. (2014). Effect of curing temperature and architectural (monolayer and bilayer) of hybrid films modified with polyethylene glycol for the corrosion protection on tinplate. Materials Research, 17, 1071–1081.

    Article  Google Scholar 

  • Landeen, L. K., Yahya, M. T., & Gerba, C. P. (1989). Efficacy of copper and silver ions and reduced levels of free chlorine in inactivation of Legionella pneumophila. Applied and Environmental Microbiology, 55, 3045–3050.

    CAS  Google Scholar 

  • Lu, H. (2013). Synthesis and characterization of amino-functionalized silica nanoparticles. Colloid Journal, 75, 311–318.

    Article  CAS  Google Scholar 

  • Lv, B., Xu, Y., Tian, H., Wu, D., & Sun, Y. (2010). Synthesis of Fe3O4\SiO2\Ag nanoparticles and its application in surface-enhanced Raman scattering. Journal of Solid State Chemistry, 183, 2968–2973.

    Article  CAS  Google Scholar 

  • Maruthupandya, M., Rajivgandhib, G., Muneeswaranc, T., Songa, J. M., & Manoharanb, N. (2018). Biologically synthesized zinc oxide nanoparticles as nanoantibiotics against ESBLs producing gram negative bacteria. Microbial Pathogenesis, 121, 224–231. https://doi.org/10.1016/j.micpath.2018.05.041.

    Article  CAS  Google Scholar 

  • Pal, S., Tak, Y. K., & Song, J. M. (2007). Does the antibacterial activity of silver nanoparticles depend on the shape of the nanoparticle? A study of the gram-negative bacterium Escherichia coli. Applied and Environmental Microbiology, 73, 1712–1720.

    Article  CAS  Google Scholar 

  • Pelgrift, R. Y., & Friedman, A. J. (2013). Nanotechnology as a therapeutic tool to combat microbial resistance. Advanced Drug Delivery Reviews, 65, 1803–1815.

    Article  CAS  Google Scholar 

  • Pinto, J., Cruz, D., Paiva, A., Pereira, S., Tavares, P., Fernandes, L., & Varum, H. (2012). Characterization of corn cob as a possible raw building material. Construction and Building Materials, 34, 28–33.

    Article  Google Scholar 

  • Prabakar, K., Sivalingam, P., Mohamed Rabeek, S. I., Muthuselvam, M., Devarajan, N., Arjunan, A., Karthick, R., Suresh, M. M., & Wembonyama, J. P. (2013). Evaluation of antibacterial efficacy of phyto fabricated silver nanoparticles using Mukiascabrella (Musumusukkai) against drug resistance nosocomial gram negative bacterial pathogens. Colloids and Surfaces B: Biointerfaces, 104, 282–288.

    Article  CAS  Google Scholar 

  • Prabhu, S., & Poulose, E. K. (2012). Silver nanoparticles: mechanism of antimicrobial action, synthesis, medical applications. and toxicity effects. International Nano Letters, 2, 1–10.

    Article  Google Scholar 

  • Pugazhendhi, A., Prabakar, D., Jacob, J. M., Karuppusamy, I., & Saratale, R. G. (2018). Synthesis and characterization of silver nanoparticles using Gelidium amansii and its antimicrobial property against various pathogenic bacteria. Microbial Pathogenesis, 114, 41–45.

    Article  CAS  Google Scholar 

  • Quang, D. V., Sarawade, P. B., Hilonga, A., Kim, J. K., Chai, Y. G., Kim, S. H., Ryu, J. Y., & Kim, H. T. (2011). Preparation of amino functionalized silica micro beads by dry method for supporting silver nanoparticles with antibacterial properties. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 389, 118–126.

    Article  CAS  Google Scholar 

  • Rai, M. K., Deshmukh, S. D., Ingle, A. P., & Gade, A. K. (2012). Silver nanoparticles: the powerful nanoweapon against multidrug-resistant bacteria. Journal of Applied Microbiology, 112, 841–852.

    Article  CAS  Google Scholar 

  • Shim, J., Shea, P. J., & Oh, B. T. (2015a). Stabilization of heavy metals in mining site soil with silica extracted from corn cob. Water, Air, & Soil Pollution, 225, 1–12.

    Google Scholar 

  • Shim, J., Velmurugan, P., & Oh, B. T. (2015b). Extraction and physical characterization of amorphous silica madefrom corn cob ash at variable pH conditions via sol gel processing. Journal of Industrial and Engineering Chemistry, 30, 249–253.

    Article  CAS  Google Scholar 

  • Shim, J., Seo, Y. S., Oh, B. T., & Cho, M. (2016). Microbial inactivation kinetics and mechanisms of carbon-doped TiO2 (C-TiO2) under visible light. Journal of Hazardous Materials, 306, 133–139.

    Article  CAS  Google Scholar 

  • Smetana, A. B., Klabunde, K. J., Marchin, G. R., & Sorensen, C. M. (2008). Biocidal activity of nanocrystalline silver powders and particles. Langmuir, 24, 7457–7464.

    Article  CAS  Google Scholar 

  • Sobczak-Kupiec, A., Milena, D., Wzorek, Z., & Zimowska, M. (2011). Influence of silver nitrate concentration on the properties of silver nanoparticles. Micro & Nano Letters, 6(8), 656–660.

    Article  CAS  Google Scholar 

  • Sondi, I., & Salopek-Sondi, B. (2004a). Silver nanoparticles as antimicrobial agent: a case study on E. Coli as a model for gram-negative bacteria. Journal of Colloid and Interface Science, 275(2004), 177–182.

    Article  CAS  Google Scholar 

  • Sondi, I., & Salopek-Sondi, B. (2004b). Silver nanoparticles as antimicrobial agent: a case study on E. coli as a model for gram-negative bacteria. Journal of Colloid and Interface Science, 275, 177–182.

    Article  CAS  Google Scholar 

  • Sonia, S., Jayasudha, R., Jayram, N. D., Kumar, P. S., Mangalaraj, D., & Prabagaran, S. R. (2016). Synthesis of hierarchical CuO nanostructures: biocompatible antibacterial agents for gram-positive and gram negative bacteria. Current Applied Physics, 16(8), 914–921.

    Article  Google Scholar 

  • Wang, L., Luo, J., Shan, S., Crew, E., Yin, J., Zhong, C. J., Wallek, B., & Wong, S. S. (2011). Bacterial inactivation using silver-coated magnetic nanoparticles as functional antimicrobial agents. Analytical Chemistry, 83, 8688–8695.

    Article  CAS  Google Scholar 

  • Yoon, K. Y., Hoon, B. J., Park, J. H., & Hwang, J. (2007). Susceptibility constants of Escherichia coli and Bacillus subtilis to silver and copper nanoparticles. Science of the Total Environment, 373, 572–575.

    Article  CAS  Google Scholar 

  • Yu, H., Zhu, Y., Yang, H., Nakanishi, K., Kanamori, K., & Guo, X. (2014). Facile preparation of silver nanoparticles homogeneously immobilized in hierarchically monolithic silica using ethylene glycol as reductant. Dalton Transactions, 43, 126848–112656.

    Google Scholar 

  • Zahera, M., Khan, S. A., Khan, I. A., Elgorban, A. M., Bahkali, A. H., Alghamdi, S. M., & Khan, M. S. (2018). Enhancing using glucose encapsulation, the efficacy of CdO NPs against multi-drug resistant Escherichia coli. Microbial Pathogenesis, 119, 42–48.

    Article  CAS  Google Scholar 

  • Zhang, X., Niu, H., Yan, J., & Cai, Y. (2011). Immobilizing silver nanoparticles onto the surface of magnetic silica composite to prepare magnetic disinfectant with enhanced stability and antibacterial activity. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 375, 186–192.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

MK thanks WARI fellowship during which he visited UNL and participated.

Funding

This project was supported by funds from the University of Nebraska–Lincoln in association with USDA multistate project W2082, USGS 104b grant no. 2015NE269B, and by the National Research Foundation of Korea (NRF) grant funded by the government (MEST; no. 2011-0020202).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Manish Kumar.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shim, J., Mazumder, P. & Kumar, M. Corn cob silica as an antibacterial support for silver nanoparticles: efficacy on Escherichia coli and Listeria monocytogenes. Environ Monit Assess 190, 583 (2018). https://doi.org/10.1007/s10661-018-6954-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10661-018-6954-2

Keywords

Navigation