Skip to main content
Log in

Relationships between aquatic invertebrate communities, water-level fluctuations and different habitats in a subtropical lake

  • Published:
Environmental Monitoring and Assessment Aims and scope Submit manuscript

Abstract

In lakes, the littoral habitat and its invertebrate communities are often exposed to water-level fluctuations. We examined the effects of seasonal changes on water level, substrata availability and benthic fauna in the littoral zone of Peri Lake, a shallow lake that has experienced a strong reduction in water level due to changes in rainfall. In this study, we also examined whether the abundance and composition of aquatic invertebrates differed among the four substrata. Our main objective was to assess the effect of seasonal changes on water level and benthic invertebrates inhabiting the different types of substrata. Benthic invertebrates were sampled four different substrata (Schoenoplectus californicus, sand and stones, allochthonous leaf litter, and macrophyte stands), and we also measured meteorological, physical and chemical variables. We found that complex habitats, such as allochthonous leaf litter and aquatic macrophyte, stand to be colonised by a larger number of macroinvertebrates because they provide more habitats or potential niches for colonisation by different species. In addition, we observed that during periods of low water level, the presence of substrata in the littoral zone decreased, as did the associated biota. Therefore, our results suggest that water level changes have a major functional impact on the littoral zone of the lake, and can affect substratum availability, which also impacts invertebrate communities.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Almeida, C., Coelho, R., Silva, M., Bentes, M. L., Monteiro, P., Ribeiro, J., Erzini, K., & Gonçalves, J. M. S. (2008). Use of different intertidal habitats by faunal communities in a temperate coastal lagoon. Estuarine, Coastal and Shelf Science, 80, 357–364. https://doi.org/10.1016/j.ecss.2008.08.017.

    Article  Google Scholar 

  • Anderson, M. J. (2001). A new method for non-parametric multivariate analysis of variance. Austral Ecology, 26, 32–46.

    Google Scholar 

  • Aroviita, J., & Hämäläinen, H. (2008). The impact of water level regulation on littoral macroinvertebrate assemblages in boreal lakes. Hydrobiologia, 613, 45–56. https://doi.org/10.1007/s10750-008-9471-4.

    Article  Google Scholar 

  • Batista-Silva, V. F., Boneto, D. D., Bailly, D. A. M. C. F., & Kashiwaqui, E. A. L. (2011). Invertebrates associated to Eichhornea azurea Kunth in a lagoon of the Upper Paraná River: composition, community attributes and influence of abiotic factors. Acta Limnologica Brasiliensia. https://doi.org/10.1590/S2179-975X2012005000016.

    Article  Google Scholar 

  • Brauns, M., Garcia, X. F., & Pusch, M. T. (2008). Potential effects of water-level fluctuations on littoral invertebrates in lowland lakes. Hydrobiologia, 613, 5–12.

    Article  Google Scholar 

  • Cai, Y. J., Lu, Y. J., Wu, Z. S., Chen, Y. W., Zhang, L., & Lu, Y. (2014). Community structure and decadal changes in macrozoobenthic assemblages in Lake Poyang, the largest freshwater lake in China. Knowledge and Management of Aquatic Ecosystems, 414, 09.

    Article  Google Scholar 

  • Carmignani, J. R., & Roy, A. H. (2017). Ecological impacts of winter water level drawdowns on lake littoral zones: a review. Aquatic Sciences, 79, 803–824.

    Article  Google Scholar 

  • Carvalho, C., Hepp, L. H., Palma-Silva, C., & Albertoni, E. F. (2015). Decomposition of macrophytes in a shallow subtropical lake. Limnologica, 53, 1–9.

    Article  CAS  Google Scholar 

  • Casartelli, M. R., & Ferragut, C. (2015). Influence of seasonality and rooted aquatic macrophyte on periphytic algal community on artificial substratum in a shallow tropical reservoir. International Review of Hydrobiology, 100, 158–168.

    Article  Google Scholar 

  • Clarke, K. R., & Gorley, R. N. (2006). PRIMER v6: User manual/tutorial. Plymouth: PRIMER-E.

    Google Scholar 

  • Coops, H., & Hosper, S. H. (2002). Water-level management as a tool for the restoration of shallow lakes in the Netherlands. Lake and Reservoir Management, 18, 293–298.

    Article  Google Scholar 

  • Covich, A. P., Margaret, A. P., & Crowl, T. A. (1999). The role of benthic invertebrate species in freshwater ecosystems: zoobenthic species influence energy flows and nutrient cycling. BioScience, 49, 119–127.

    Article  Google Scholar 

  • Dalu, T., Clegg, B., & Nhiwatiwa, T. (2012). Macroinvertebrate communities associated with littoral zone habitats and the influence of environmental factors in Malilangwe Reservoir, Zimbabwe. Knowledge and Management of Aquatic Ecosystems, 406, 06.

    Article  Google Scholar 

  • Dinka, M., Agoston-Szabo, E., Bercik, A., & Kutrucz, G. (2004). Influence of water level fluctuation on the spatial dynamic of the water chemistry at lake Ferto/Neusiedler See. Limnologica, 334, 48–56.

    Article  Google Scholar 

  • Dufrêne, M., & Legendre, P. (1997). Species assemblages and indicator species: the need for a flexible asymmetrical approach. Ecological Monographs, 67, 345–366.

    Google Scholar 

  • Esteves, F. A., Caliman, A., Santangelo, J. M., Guariento, R. D., Farjalla, V. F., & Bozelli, R. L. (2008). Neotropical coastal lagoons: an appraisal of their biodiversity, functioning, threats and conservation management. Brazilian Journal of Biology, 68, 967–981. https://doi.org/10.1590/S1519-69842008000500006.

    Article  CAS  Google Scholar 

  • Evtimova, V. V., & Donohue, I. (2014). Quantifying ecological responses to amplified water level fluctuations in standing waters: an experimental approach. Journal of Applied Ecology, 51, 1282–1291. https://doi.org/10.1111/1365-2664.12297.

    Article  Google Scholar 

  • Evtimova, V. V., & Donohue, A. (2016). Water-level fluctuations regulate the structure and functioning of natural lakes. Freshwater Biology, 61, 251–264. https://doi.org/10.1111/fwb.12699.

    Article  Google Scholar 

  • Fernández, H. R., & Domíngues, E. (2001). Guia para la determinación de los artrópodos bentônicos sudamericanos. Tucumán: Universidad Nacional de Tucumán 282 p.

    Google Scholar 

  • Fischer, P., & Öhl, O. (2005). Effects of water-level fluctuations on the littoral benthic fish community in lakes: a Mesocosm experiment. Behavioral Ecology, 16, 741–746.

    Article  Google Scholar 

  • Fontes, M. L. S., Marotta, H., MacIntyre, S., & Petrucio, M. M. (2015). Inter-and intra-annual variations of pCO2 and pO2 in a freshwater subtropical coastal lake. Inland Waters, 5, 107–116.

    Article  Google Scholar 

  • Freire, R.H.F., Benassi, R.F., Calijuri, M.C., Sanchez, A.A. (2015). Influence of water fluctuations on the limnological characteristics of two floodplain lagoons (Ribeira do Iguape Valley, state of São Paulo, Brazil. Acta Limnologica Brasiliensia, 27, 431–440.

    Article  Google Scholar 

  • Fuentes, E. V., & Petrucio, M. M. (2015). Water level decrease and increased water stability promotes phytoplankton growth in a mesotrophic subtropical lake. Marine and Freshwater Research, 66, 711–718.

    Article  CAS  Google Scholar 

  • Gasith, A., & Gafny, S. (1990). Effects of water level fluctuation on the structure and function of the littoral zone. In M. M. Tilzer & C. Serruya (Eds.), Large lakes: ecological structure and function (pp. 156–171). Berlin: Springer-Verlag.

    Chapter  Google Scholar 

  • Ghani, W. M. H. W. A., Rawi, C. S. M., Hamid, S. A., & Al-Shami, S. A. (2016). Efficiency of different sampling tools for aquatic macroinvertebrate collections in Malaysian streams. Tropical Life Sciences Research, 27, 115–133.

    Google Scholar 

  • Giller, P. S., & Malmqvist, B. (1998). The biology of streams and rivers. Oxford: Oxford University Press.

    Google Scholar 

  • Graça, M. A., & Cressa, C. (2010). Leaf quality of some tropical and temperate tree species as food resource for stream shredders. Hydrobiologia, 95, 27–41.

    Google Scholar 

  • Graça, M. A. S., Ferreira, W. R., Firmiano, K., França, J., & Callisto, C. (2015). Macroinvertebrate identity, not diversity, differed across patches differing in substrate particle size and leaf litter packs in low order tropical Atlantic forest streams. Limnetica, 34, 29–40.

    Google Scholar 

  • Hennemann, M. C., & Petrucio, M. M. (2011). Spatial and temporal dynamic of trophic relevant parameters in a subtropical coastal lagoon in Brazil. Environmental Monitoring and Assessment, 181, 347–361.

    Article  Google Scholar 

  • Johnson, R. K., Goedkoop, W., & Sandin, L. (2004). Spatial scale and ecological relationships between the macroinvertebrate communities of stony habitats of streams and lakes. Freshwater Biology, 49, 1179–1194.

    Article  Google Scholar 

  • Kubosova, K., Brabec, K., Jarkovsky, J., & Syrovatka, V. (2010). Selection of indicative taxa for river habitats: a case study on benthic macroinvertebrates using indicator species analysis and the random forest methods. Hydrobiologia, 651, 101–114.

    Article  Google Scholar 

  • Larsen, S., Vaughan, I. P., & Ormerod, S. J. (2009). Scale-dependent effects of fine sediments on temperate headwater invertebrates. Freshwater Biology, 54, 203–219.

    Article  CAS  Google Scholar 

  • Leira, M., & Cantonati, M. (2008). Effects of water-level fluctuations on lakes: an annotated bibliography. Hydrobiologia, 613, 171–184.

    Article  Google Scholar 

  • Lemes-Silva, A. L., Pagliosa, P. P., & Petrucio, M. M. (2014). Inter-and intra-guild patterns of food resource utilization by chironomid larvae in a subtropical coastal lagoon. Limnology, 15, 1–12.

    Article  Google Scholar 

  • Lemes-Silva, A. L., Pires, J. R., Pagliosa, P. R., & Petrucio, M. M. (2016). Distribution of aquatic macroinvertebrate assemblages in a subtropical coastal lake: response to environmental parameters. Fundamental and Applied Limnology, 188, 113–127.

    Article  Google Scholar 

  • Magbanua, F. S., Mendoza, N. Y. B., Uya, C. J. C., Matthaeib, D. C., & Onga, P. S. (2015). Water physicochemistry and benthic macroinvertebrate communities in a tropical reservoir: the role of water level fluctuations and water depth. Limnologica, 55, 13–20.

    Article  CAS  Google Scholar 

  • McEwen, D. C., & Butler, M. G. (2010). The effects of water level manipulation on the benthic invertebrates of a managed reservoir. Freshwater Biology, 55, 1086–1101.

    Article  Google Scholar 

  • Merritt, R. W., Cummins, K. W., & Berg, M. B. (2008). An introduction to the aquatic insects of North America. Dubuque: Hunt Publishing Company.

    Google Scholar 

  • Mormul, R. P., Thomaz, S. M., Takeda, A. M., Behrend, R. D. (2011). Structural complexity and distance from source habitat determine invertebrate abundance and diversity. Biotropica, 43, 738–745.

    Article  Google Scholar 

  • Mugnai, R., Nessimian, J. L., & Baptista, D. F. (2010). Manual de identificação de Macroinvertebrados aquáticos do Estado do Rio de Janeiro. Technical Books.

  • Neves dos Santos, A. F. G., Santos, L. N., & Araújo, F. G. (2004). Water level influences on body condition of Geophagus brasiliensis (Perciformes: Cichlidae) in a Brazilian oligotrophic reservoir. Neotropical Ichthyology, 2, 151–156.

    Article  Google Scholar 

  • Pardo, I., & Armitage, P. D. (1997). Species assemblages as descriptors of mesohabitats. Hydrobiologia, 344, 111–128.

    Article  Google Scholar 

  • Pech, D., Ardisson, P. L., & Hernandéz-Guevara, N. A. (2007). Benthic community response to habitat variation: a case of study from a natural protected area, the Celestum coastal lagoon. Continental Shelf Research, 272, 523–533.

    Google Scholar 

  • Peiró, D. F., Amaral, G. F., & Saulino, H. H. L. (2015). Structure community of aquatic insects associated with different macrophytes in ornamental lakes in a savanna region, Southeastern Brazil. Pan-American Journal of Aquatic Sciences, 10, 273–282.

    Google Scholar 

  • Pope, R. J., Gordon, A. M., & Kaushik, N. K. (1999). Leaf litter colonization by invertebrates in the littoral zone of a small oligotrophic lake. Hydrobiologia, 392, 99–112.

    Article  Google Scholar 

  • R Core Team. (2017). R: A language and environment for statistical computing. Vienna: R Foundation for Statistical Computing.

    Google Scholar 

  • Rabeni, C. F., Doisy, K. E., & Galat, D. L. (2002). Testing the biological basis of a stream habitat classification using benthic invertebrates. Ecological Applications, 12, 782–796.

    Article  Google Scholar 

  • Roberto, M.C., Santana, N.F., Thomaz, S.M. (2009). Limnology in the Upper Paraná River floodplain: large-scale spatial and temporal patterns, and the influence of reservoirs. Brazilian Journal of Biology, 69, 717–725.

    Article  CAS  Google Scholar 

  • Rosenberg, D. M., & Resh, V. H. (1993). Freshwater biomonitoring and benthic macroinvertebrates. New York: Chapman & Hall.

    Google Scholar 

  • Spitale, D., Angeli, N., Lencioni, V., Tolotti, M.,Cantonati, M. (2015). Comparison between natural and impacted Alpine lakes six years after hydropower exploitation has ceased. Biologia, 70, 1597–1605. https://doi.org/10.1515/biolog-2015-0185.

  • St. Pierre, J. I., & Kovalenko, K. E. (2014). Effect of habitat complexity attributes on species richness. Ecosphere, 5, 22.

    Article  Google Scholar 

  • Sutela, T., Aroviita, J., & Keto, A. (2013). Assessing ecological status of regulated lakes with littoral macrophyte, macroinvertebrate and fish assemblages. Ecological Indicators, 24, 185–192.

    Article  Google Scholar 

  • Tadeusz, P., Miroslawa, P., & Bijok, P. (1999). Diversity of invertebrate fauna in littoral of shallow Myczkowce dam reservoir in comparison with a deep Solina dam reservoir. Hydrobiologia, 408, 203–210.

    Google Scholar 

  • Thomaz, S. M., Dibble, E. D., Evangelista, L. R., Higuti, J., & Bini, L. M. (2008). Influence of aquatic macrophyte habitat complexity on invertebrate abundance and richness in tropical lagoons. Freshwater Biology, 53, 358–367.

    Google Scholar 

  • Tonetta, D., Staehr, P. A., Schmitt, R., & Petrucio, M. M. (2016). Physical conditions driving the spatial and temporal variability in aquatic metabolism of a subtropical coastal lake. Limnologica, 58, 30–40. https://doi.org/10.1016/j.limno.2016.01.006.

    Article  CAS  Google Scholar 

  • Tonetta, D., Staehr, P. A., & Petrucio, M. M. (2017). Changes in CO2 dynamics related to rainfall and water level variations in a subtropical lake. Hydrobiologia, 794, 109–123.

    Article  CAS  Google Scholar 

  • Valdovinos, C., Moya, C., Olmos, V., Parra, O., Karrasch, B., & Buettner, O. (2007). The importance of water-level fluctuation for the conservation of shallow water benthic macroinvertebrates: an example in the Andean zone of Chile. Biological Conservation, 16, 3095–3109.

    Google Scholar 

  • Van Geest, G. J., Wolters, H., Roozen, F. C. J. M., Coops, H., Roijackers, R. M. M., Buijse, A. D., & Scheffe, M. (2005). Water-level fluctuations affect macrophyte richness in floodplain lakes. Hydrobiologia, 539, 239–248.

    Article  Google Scholar 

  • Vera, C., Higgins, W., Amador, J., Ambrizzi, T., Garreaud, R., Gochis, D., Gutzler, D., Lettenmaier, D., Marengo, J., Mechoso, C. R., Nogues-Paegle, J., Silva Dias, P. L., & Zhang, C. (2006). Toward a unified view of the American Monsoon Systems. Journal of Climate, 19, 4977–5000.

    Article  Google Scholar 

  • Wang, M. Z., Liu, Z. Y., Luo, F. L., Lei, G. C., & Li, H. L. (2016). Do amplitudes of water level fluctuations affect the growth and community structure of submerged macrophytes? PLoS One, 11, e0146528. https://doi.org/10.1371/journal.pone.0146528.

    Article  CAS  Google Scholar 

  • White, M. S., Xenopoulos, M. A., Hogsden, K., Metcalfe, R. A., & Dillon, P. J. (2008). Natural lake level fluctuation and associated concordance with water quality and aquatic communities within small lakes of the Laurentian Great Lakes region. Hydrobiologia, 613, 21–31.

    Article  CAS  Google Scholar 

  • Zerlin, R. A., & Henry, R. (2014). Does water level affect benthic macro-invertebrates of a marginal lake in a tropical river-reservoir transition zone? Brazilian Journal of Biology, 74, 408–419.

    Article  CAS  Google Scholar 

  • Zohary, T., & Ostrovsky, L. (2011). Ecological impacts of excessive water level fluctuations in stratified freshwater lakes. Inland Waters, 1, 47–59.

    Article  Google Scholar 

Download references

Acknowledgements

We are grateful to staff from Laboratory of Freshwater Ecology from Federal University of Santa Catarina (www.limnos.ufsc.br) for collaborative efforts related to the samplings. We thank the ICEA (Instituto de Controle do Espaco Aéreo) and CASAN (Companhia Catarinense de Água e Esgoto) for providing rainfall and water level data, respectively.

Funding

This study was funded by CNPq (Conselho Nacional de Desenvolvimento Científico e Tecnológico) and the first author was supported by CAPES (Coordenação de Aperfeiçoamento de Pessoal de Nível Superior).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Aurea Luiza Lemes da Silva.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lemes da Silva, A.L., Petrucio, M.M. Relationships between aquatic invertebrate communities, water-level fluctuations and different habitats in a subtropical lake. Environ Monit Assess 190, 548 (2018). https://doi.org/10.1007/s10661-018-6929-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10661-018-6929-3

Keywords

Navigation