Real-time water quality monitoring using Internet of Things in SCADA

Abstract

Water pollution is the root cause for many diseases in the world. It is necessary to measure water quality using sensors for prevention of water pollution. However, the related works remain the problems of communication, mobility, scalability, and accuracy. In this paper, we propose a new Supervisory Control and Data Acquisition (SCADA) system that integrates with the Internet of Things (IoT) technology for real-time water quality monitoring. It aims to determine the contamination of water, leakage in pipeline, and also automatic measure of parameters (such as temperature sensor, flow sensor, color sensor) in real time using Arduino Atmega 368 using Global System for Mobile Communication (GSM) module. The system is applied in the Tirunelveli Corporation (Metro city of Tamilnadu state, India) for automatic capturing of sensor data (pressure, pH, level, and energy sensors). SCADA system is fine-tuned with additional sensors and reduced cost. The results show that the proposed system outperforms the existing ones and produces better results. SCADA captures the real-time accurate sensor values of flow, temperature, and color and turbidity through the GSM communication.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19

References

  1. Afifi, M., Abdelkader, M. F., & Ghoneim, A. (2018). An IoT system for continuous monitoring and burst detection in intermittent water distribution networks. In Innovative Trends in Computer Engineering (ITCE), 2018 International Conference on (pp. 240-247).

  2. Agarwal, A., Shukla, V., Singh, R., Gehlot, A., & Garg, V. (2018). Design and development of air and water pollution quality monitoring using IoT and quadcopter. In Intelligent Communication, Control and Devices (pp. 485–492). Springer, Singapore.

    Google Scholar 

  3. Ahmed, S., & Ismail, S. (2018). Water pollution and its sources, effects & management: a Case Study of Delhi. International Journal of Current Advanced Research, 7(2L), 10436–10442.

  4. Ali, M., Son, L. H., Thanh, N. D., & Van Minh, N. (2017). A neutrosophic recommender system for medical diagnosis based on algebraic neutrosophic measures. Applied Soft Computing. https://doi.org/10.1016/j.asoc.2017.10.012.

    Article  Google Scholar 

  5. Ali, M., Dat, L. Q., Son, L. H., & Smarandache, F. (2018a). Interval complex neutrosophic set: formulation and applications in decision-making. International Journal of Fuzzy Systems, 20(3), 986–999.

    Article  Google Scholar 

  6. Ali, M., Son, L. H., Khan, M., & Tung, N. T. (2018b). Segmentation of dental X-ray images in medical imaging using neutrosophic orthogonal matrices. Expert Systems with Applications, 91, 434–441.

    Article  Google Scholar 

  7. Anusuya, E., & Saravanan, K. (2017). Real time data handling in SCADA system using map reducing algorithm. International Conference on Discrete and Computational Mathematics.

  8. Asalmol, M., et al. (2017). Water management system for Smart City using IoT. Imperial Journal of Interdisciplinary Research, 3(11), 45–52.

    Google Scholar 

  9. Azman, A. A., Rahiman, M. H. F., Taib, M. N., Sidek, N. H., Bakar, I. A. A., & Ali, M. F. (2016). A low cost nephelometric turbidity sensor for continual domestic water quality monitoring system. In Automatic Control and Intelligent Systems, I2CACIS, (pp. 202–207), IEEE.

  10. Barabde, M. & Danve, S., (2015a). Real time water quality monitoring system. International Journal of Innovative Research in Computer and Communication Engineering, (pp. 1–6).

  11. Barabde, M.N. & Danve, S.R. (2015b). Design of a Water Environment Monitoring System Based on IOT using embedded Linux, international conference on Technologies for Sustainable Development ICTSD, (pp. 1475-1479).

  12. Chuan, P. M., Son, L. H., Ali, M., Khang, T. D., & Dey, N. (2018). Link prediction in co-authorship networks based on hybrid content similarity metric. Applied Intelligence, 48(8), 2470–2486.

    Article  Google Scholar 

  13. Creaco, E., & Pezzinga, G. (2015). Embedding linear programming in multi objective genetic algorithms for reducing the size of the search space with application to leakage minimization in water distribution networks. Environmental Modelling and Software, 69, 308–318.

    Article  Google Scholar 

  14. Deutsch, E. S., Alameddine, I., & El-Fadel, M. (2018). Monitoring water quality in a hypereutrophic reservoir using Landsat ETM+ and OLI sensors: how transferable are the water quality algorithms? Environmental Monitoring and Assessment, 190(3), 141.

    Article  CAS  Google Scholar 

  15. Devi, B. M. & Abirami, N. A. (2014), Real time system for determination of drinking water quality. American Water Works Association Journal awwa, (pp. 20–26).

  16. Ebere, E. V., & Francisca, O. O. (2013). Microcontroller based automatic water level control system. International Journal of Innovative Research in Computer and Communication Engineering, 1(6), 1390–1396.

  17. Giap, C. N., Son, L. H., & Chiclana, F. (2018). Dynamic structural neural network. Journal of Intelligent & Fuzzy Systems, 34(4), 2479–2490.

    Article  Google Scholar 

  18. Hemanth, D. J., Anitha, J., Popescu, D. E., & Son, L. H. (2018a). A modified genetic algorithm for performance improvement of transform based image steganography systems. Journal of Intelligent & Fuzzy Systems, 35(1), 197–209.

    Article  Google Scholar 

  19. Hemanth, D. J., Anitha, J., & Son, L. H. (2018b). Brain signal based human emotion analysis by circular back propagation and deep Kohonen neural networks. Computers and Electrical Engineering, 68, 170–180.

    Article  Google Scholar 

  20. Huang, P., Jin, Y., Hou, D., Yu, J., Tu, D., Cao, Y., & Zhang, G. (2017). Online classification of contaminants based on multi-classification support vector machine using conventional water quality sensors. Sensors, 17(3), 581.

    Article  CAS  Google Scholar 

  21. Jácome, G., Valarezo, C., & Yoo, C. (2018). Assessment of water quality monitoring for the optimal sensor placement in lake Yahuarcocha using pattern recognition techniques and geographical information systems. Environmental Monitoring and Assessment, 190(4), 259.

    Article  Google Scholar 

  22. Jegadeesan, S., et.al. (2018). ECC based algorithms for secure water quality monitoring system using wireless sensor networks. Taga Journal, 14, 1347–1356.

  23. Jindal, H., Saxena, S., & Kasana, S. S. (2017a). Sewage water quality monitoring framework using multi-parametric sensors. Wireless Personal Communications, 97(1), 881–913.

    Article  Google Scholar 

  24. Jindal, H., Saxena, S., & Kasana, S. S. (2017b). A sustainable multi-parametric sensors network topology for river water quality monitoring. Wireless Networks, 1–25. https://doi.org/10.1007/s11276-017-1532-z.

    Article  Google Scholar 

  25. Kamaludin, Hafiz, K. & Ismail W. (2017). Water quality monitoring with internet of things (IoT). Systems, process and control (ICSPC), 2017 IEEE conference. (pp.12-17), IEEE.

  26. Kapoor, R., Gupta, R., Kumar, R., Son, L. H., & Jha, S. (2018a). New scheme for underwater acoustically wireless transmission using direct sequence code division multiple access in MIMO systems. Wireless Networks, 1–13. https://doi.org/10.1007/s11276-018-1750-z.

  27. Kapoor, R., Gupta, R., Son, L. H., Jha, S., & Kumar, R. (2018b). Boosting performance of power quality event identification with KL divergence measure and standard deviation. Measurement, 126, 134–142.

    Article  Google Scholar 

  28. Kapoor, R., Gupta, R., Son, L. H., Jha, S., & Kumar, R. (2018c). Detection of power quality event using histogram of oriented gradients and support vector machine. Measurement, 120, 52–75.

    Article  Google Scholar 

  29. Khan, M, Son, LH, Ali, M, Chau, HTM, Na, NTN, Smarandache, F (2018). Systematic review of decision making algorithms in extended neutrosophic sets. Symmetry-Basel, 10, 314–342.

    Article  Google Scholar 

  30. Kim, L. H., D’Arcy, B. J., Ibanez, M., & Maniquiz-Redillas, M. (2017). Industrial estates as sources of water pollution. Wealth Creation without Pollution-Designing for Industry, Ecobusiness Parks and Industrial Estates, (pp. 37–51).

  31. Lambrou, T. P., Anastasiou, C. C., Panayiotou, C. G., & Polycarpou, M. M. (2014). A low-cost sensor network for real-time monitoring and contamination detection in drinking water distribution systems. IEEE Sensors Journal, 14(8), 2765–2772.

    Article  Google Scholar 

  32. Lin, W. C., Brondum, K., Monroe, C. W., & Burns, M. A. (2017). Multifunctional water sensors for pH, ORP, and conductivity using only micro fabricated platinum electrodes. Sensors, 17(7), 16–55.

    Google Scholar 

  33. Louati, A., Son, L. H., & Chabchoub, H. (2018). Smart routing for municipal solid waste collection: a heuristic approach. Journal of Ambient Intelligence and Humanized Computing, 1-20. https://doi.org/10.1007/s12652-018-0778-3.

  34. Luo, X., & Yang, J. (2017). Water pollution detection based on hypothesis testing in sensor networks. Journal of Sensors, p. 8. https://doi.org/10.1155/2017/3829894.

    Article  CAS  Google Scholar 

  35. Mir & Mehwish. (2017). An IOT approach to monitor water quality using MQTT algorithm. International Journal of Advance Research, Ideas and Innovations in Technology, 3(3), 800–805.

    Google Scholar 

  36. Ngan, R. T., Son, L. H., Cuong, B. C., & Ali, M. (2018a). H-max distance measure of intuitionistic fuzzy sets in decision making. Applied Soft Computing, 69, 393–425.

    Article  Google Scholar 

  37. Ngan, R. T., Ali, M., & Son, L. H. (2018b). δ-equality of intuitionistic fuzzy sets: a new proximity measure and applications in medical diagnosis. Applied Intelligence, 48(2), 499–525.

    Article  Google Scholar 

  38. Nguyen, G. N., Son, L. H., Ashour, A. S., & Dey, N. (2017). A survey of the state-of-the-arts on neutrosophic sets in biomedical diagnoses. International Journal of Machine Learning and Cybernetics, 1–13. https://doi.org/10.1007/s13042-017-0691-7.

  39. Panfili, I., Bartucca, M. L., Ballerini, E., & Del Buono, D. (2017). Combination of aquatic species and safeners improves the remediation of copper polluted water. Science of the Total Environment, 601, 1263–1270.

    Article  CAS  Google Scholar 

  40. Parameswari, M., & Balasingh M. (2018a). Efficient analysis of water quality measurement reporting system using IOT based system in WSN. Cluster Computing, 1–9. https://doi.org/10.1007/s10586-017-1581-1.

  41. Parameswari, M., & Balasingh M. (2018b). Online measurement of water quality and reporting system using prominent rule controller based on aqua care-IOT. Design Automation for Embedded Systems, 22(1–2), 25–44.

    Article  Google Scholar 

  42. Pham, B. T., Son, L. H., Hoang, T. A., Nguyen, D. M., & Bui, D. T. (2018). Prediction of shear strength of soft soil using machine learning methods. Catena, 166, 181–191.

    Article  Google Scholar 

  43. Pranata, A. A., Lee, J. M., & Kim, D. S, (2017). Towards an IoT-based water quality monitoring system with brokerless pub/sub architecture. In local and metropolitan area networks, LANMAN, IEEE international symposium, (pp. 1-6), IEEE.

  44. PressReade (2018). Water: Freely we receive, freely we abuse. Available at: https://www.pressreader.com/sri-lanka/daily-mirror-sri-lanka/20160608/282432758422013

  45. Ramesh, Maneesha V., et al. (2017). Water quality monitoring and waste management using IoT. Global Humanitarian Technology Conference (GHTC), (pp. 78–82),IEEE.

  46. Riis, T. S. (2016). Modelling water distribution systems-integration between SCADA systems and hydraulic network simulation models, Master’s thesis, NTNU, 2016.

  47. Saravanan, K. (2017). Cloud robotics: robot rides on the cloud – architecture, applications, and challenges. In R. Kumar, P. Pattnaik, & P. Pandey (Eds.), Detecting and mitigating robotic cyber security risks (pp. 261–274). Hershey: IGI Global. https://doi.org/10.4018/978-1-5225-2154-9.ch017.

    Google Scholar 

  48. Saravanan, K., & Saraniya, S. (2018). Cloud IOT based novel livestock monitoring and identification system using UID. Sensor Review, 38(1), 21–33. https://doi.org/10.1108/SR-08-2017-0152.

    Article  Google Scholar 

  49. Saravanan, K., & Srinivasan, P. (2017). Examining IoT’s applications using cloud services. In P. Tomar & G. Kaur (Eds.), Examining cloud computing technologies through the Internet of Things (pp. 147–163). Hershey: IGI Global. https://doi.org/10.4018/978-1-5225-3445-7.ch008.

    Google Scholar 

  50. Satish, T., & Amruta, K., (2013). Water quality monitoring system using ZigBee based wireless sensor network, IEEE conference on automation, computing, communication, control and compressed sensing, (pp. 281-285), IEEE.

  51. Silva, et al. (2011). Grid-based wide area water quality measurement system for surface water, IEEE Conference on Local Computer Networks, (pp.108–114), IEEE.

  52. Singh, K., Singh, K., Son, L. H., & Aziz, A. (2018). Congestion control in wireless sensor networks by hybrid multi-objective optimization algorithm. Computer Networks, 138, 90–107.

    Article  Google Scholar 

  53. Smith, L., Inman, A., Lai, X., Zhang, H., Fanqiao, M., Jianbin, Z., et al. (2017). Mitigation of diffuse water pollution from agriculture in England and China, and the scope for policy transfer. Land Use Policy, 61, 208–219.

    Article  Google Scholar 

  54. Son, L. H., Fujita, H. (2018). Neural-fuzzy with representative sets for prediction of student performance. Applied Intelligence, in press.

  55. Son, L. H., Chiclana, F., Kumar, R., Mittal, M., Khari, M., Chatterjee, J. M., & Baik, S. W. (2018a). ARM–AMO: an efficient association rule mining algorithm based on animal migration optimization. Knowledge-Based Systems, 154, 68–80.

    Article  Google Scholar 

  56. Son, L. H., Jha, S., Kumar, R., Chatterjee, J. M., & Khari, M. (2018b). Collaborative handshaking approaches between internet of computing and internet of things towards a smart world: a review from 2009–2017. Telecommunication Systems, 1–18.

  57. Stoian, I., Capatina, D., Ghiran, O., Miclea, L. C., & Enyedi, S. (2016). SCADA plug-in modules and instruments for federative organisation: application on water management. In automation, quality and testing, robotics, AQTR, (pp.1-6), IEEE.

  58. Sun, H., Shi, B., Yang, F., & Wang, D. (2017). Effects of sulfate on heavy metal release from iron corrosion scales in drinking water distribution system. Water Research, 114, 69–77.

    CAS  Article  Google Scholar 

  59. Tam, N. T., Hai, D. T., Son, L. H., & Vinh, L. T. (2018). Improving lifetime and network connections of 3D wireless sensor networks based on fuzzy clustering and particle swarm optimization. Wireless Networks, 24(5), 1477–1490.

    Article  Google Scholar 

  60. Tuan, T. M., Fujita, H., Dey, N., Ashour, A. S., Ngoc, V. T. N., & Chu, D. T. (2018). Dental diagnosis from X-ray images: an expert system based on fuzzy computing. Biomedical Signal Processing and Control, 39, 64–73.

    Article  Google Scholar 

  61. Tuong, L., Son, L. H., Vo, M. T., Lee, M. Y., & Baik, S. W. (2018). Cluster-based boosting algorithm for bankruptcy prediction. Symmetry, 10, 250–262.

    Article  Google Scholar 

  62. Wong, B. P., & Kerkez, B. (2016). Real-time environmental sensor data: an application to water quality using web services. Environmental Modelling & Software, 84, 505–517.

    Article  Google Scholar 

  63. Zakaria, Y., & Michael, K. (2017). An integrated cloud-based wireless sensor network for monitoring industrial wastewater discharged into water sources. Wireless Sensor Network, 9(8), 290–298.

    Article  Google Scholar 

  64. Zhenan, L., Kai, W., & Bo, L. (2013). Design and development of automatic water flow. IEEE Journal of Sensors, 2(4), 78–81.

    Google Scholar 

Download references

Funding

This project work is supported by the consultancy project SCADA Roc.No.E1/9912/2007 dated 24.5.17 from Tirunelveli Corporation, Tamilnadu, India.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Le Hoang Son.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Saravanan, K., Anusuya, E., Kumar, R. et al. Real-time water quality monitoring using Internet of Things in SCADA. Environ Monit Assess 190, 556 (2018). https://doi.org/10.1007/s10661-018-6914-x

Download citation

Keywords

  • Sensors
  • Internet of Things
  • SCADA
  • Water quality monitoring
  • Water distribution