Skip to main content

Advertisement

Log in

Development, growth, and biomass simulations of two common wetland tree species in Texas

  • Published:
Environmental Monitoring and Assessment Aims and scope Submit manuscript

Abstract

Monitoring the health and condition of wetlands using biological assessments can serve as an effective tool for environmental managers to better evaluate and monitor the status and trends of their wetland ecosystems. Woody species can be used as conspicuous biological assessment tools due to their direct response to environmental change, such as hydrologic alteration. The purpose of this study is to use field-measured morphological measurement indices to develop and optimize tree growth parameters and growth curves using multi-model combination approach to improve tree biomass estimations. Field morphological investigations were conducted for two common wetland tree species in Texas. A range of morphological characteristics including leaf area index, height, and biomass was measured for black willow (Salix nigra Marsh) and green ash (Fraxinus pennsylvanica) sampled from 15 sites in a wetland near Cameron, Texas. The measured morphological parameters were used to optimize tree growth and development with the ALMANAC model. The developed tree growth parameters and growth curves were subsequently used in the APEX model to simulate tree biomass at the catchment scale. Both models accurately simulated biomass of trees growing in the wetland. This accurate biomass prediction will be useful to advance science to better monitor and assess wetland health on a large scale (e.g. national or global).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 5
Fig. 4
Fig. 6

Similar content being viewed by others

References

  • Baker, P.J., & Robinson, A. (2010). Review and comparison of tree- and stand-based forest growth models for potential integration into EnSym. State of Victoria, Australia. https://ensym.dse.vic.gov.au/docs/EnSymForestModellingReport_2.pdf

  • Bond, B. J., Czarnomski, N. M., Cooper, C., Day, M. E., & Greenwood, M. S. (2007). Developmental decline in height growth in Douglas fir. Tree Physiology, 27, 441–453.

    Article  Google Scholar 

  • Bowman, D. M. J. S., Brienen, R. J. W., Gloor, E., Phillips, O. L., & Prior, L. D. (2012). Detecting trends in tree growth: not so simple. TRPLSC, 1007, 1–7.

    Google Scholar 

  • Broeckx, L. S., Verlinden, M. S., Vangronsveld, J., & Ceulemans, R. (2012). Importance of crown architecture for leaf area index of different Populus genotypes in a high-density plantation. Tree Physiology, 32, 1214–1226.

    Article  CAS  Google Scholar 

  • Cappiella, K., & Fraley-McNeal, L. (2007). The importance of protecting vulnerable streams and wetlands at the local level. Washington, DC: Office of Wetlands, Oceans and Watersheds—USEPA.

    Google Scholar 

  • CCW (Committee on Characterization of Wetlands) and NRC (National Research Council). (1995). Wetlands: characteristics and boundaries. Washington, DC: The National Academies N.W..

    Google Scholar 

  • Daniels, A. E., & Cumming, G. S. (2008). Conversion or conservation? Understanding wetland change in northwest Costa Rica. Ecological Applications, 18, 49–63.

    Article  Google Scholar 

  • Debaeke, P., Caussanel, J. F., Kiniry, J. R., Kafiz, B., & Mondragon, G. (1997). Modeling crop: weed interactions in wheat with ALAMANC. Weed Research, 37, 325–341.

    Article  Google Scholar 

  • Dionigi, C. P., Mendelssohn, I. A., & Sullivan, V. I. (1985). Effects of soil waterlogging on the energy status and distribution of Salix nigra and S. exigua (Salicaceae) in the Atchafalaya River Basin of Louisiana. American Journal of Botany, 72, 109–119.

    Article  Google Scholar 

  • Dixon, R. K., Meldahl, R. S., Ruark, G. A., & Warren, W. G. (1990). Process modeling of forest growth responses to environmental stress. Portland, OR: Timber Press, Inc..

    Google Scholar 

  • Doherty, S.J., M. Cohen, C. Lane, & J. Surdick. (2000). Biological criteria for inland freshwater wetlands in Florida: a review of scientific and technical literature (1990–1999). Gainesville: Report to United States Environmental Protection Agency, Biological Assessment of Wetlands Workgroup by University of Florida Center for Wetlands.

  • Evans, J. D. (1996). Straightforward statistics for the behavioral sciences. Pacific Grove, CA: Brooks/Cole Publishing.

    Google Scholar 

  • Federal Interagency Stream Restoration Working Group. (1998). Stream corridor restoration: principles, processes and practices. Springfield, Virginia: National Technical Information Service, U.S. Department of Commerce.

    Google Scholar 

  • Gargiullo, M. (2007). A guide to native plants of the New York city region (p. 9). New York: Rutgers University Press.

    Google Scholar 

  • Gassman, P. W., Williams, J. R., Wang, X., Saleh, A., Osei, E., Hauck, L. M., Izaurralde, R. C., & Flowers, J. D. (2010). The Agricultural Policy/Environmental eXtender (APEX) model: an emerging tool for landscape and watershed environmental analyses. Transactions of the ASABE, 53, 711–740.

    Article  Google Scholar 

  • Golmohammadi, G., Prasher, S., Madani, A., & Rudra, R. (2014). Evaluating three hydrological distributed watershed models: MIKE-SHE, APEX, SWAT. Hydrology, 1, 20–39.

    Article  Google Scholar 

  • Good, B. J., & Patrick, W. H. (1987). Gas composition and respiration of water oak (Quercus nigra L.) and green ash (Fraxinus pennsylvanica Marsh.) roots after prolonged flooding. Plant and Soil, 97, 419–427.

    Article  CAS  Google Scholar 

  • Grissinger, E. H., & Bowie, A. J. (1984). Material and site controls of stream bank vegetation. Transitions of the ASAE, 27, 1829–1835.

    Article  Google Scholar 

  • Guo, T., Engel, B. A., Shao, G., Arnold, J. G., Srinivason, R., & Kiniry, J. R. (2015). Functional approach to simulating short-rotation woody crops in process-based models. Bioenergy Research, 8, 1598–1613.

    Article  Google Scholar 

  • Hammerson, G. A. (2004). Connecticut wildlife: biodiversity, natural history, and conservation. Lebanon, NH: UPNE.

    Google Scholar 

  • Hook, D. D., & Brown, C. F. (1973). Root adaptations and relative flood tolerance of five hardwood species. Forest Science, 19, 225–229.

    Google Scholar 

  • Hosner, J. F. (1962). The southern hardwood region. In J. W. Barrett (Ed.), Regional silviculture of the U.S. (pp. 296–333). New York: John Wiley.

    Google Scholar 

  • Hupp, C. R. (1992). Riparian vegetation recovery patterns following stream channelization: a geomorphic perspective. Ecology, 73, 1209–1226.

    Article  Google Scholar 

  • Ishak, W. I. W., & Awal, M. A. (2007). Leaf area index model for oil palm FFB yield prediction. Pertanika Journal of Tropical Agricultural Science, 30, 51–56.

    Google Scholar 

  • Ji, W. (2007). Wetland and water resource modeling and assessment: a watershed perspective. Boca Raton, FL: CRC Press.

    Book  Google Scholar 

  • Kim, S., Jeong, J., & Kiniry, J. R. (2018). Simulating the productivity of desert woody shrubs in Southwestern Texas, Arid Environments and Sustainability Hasaon Arman. London: IntechOpen.

    Google Scholar 

  • Kiniry, J. R. (1998). Biomass accumulation and radiation use efficiency of honey mesquite and eastern red cedar. Biomass and Bioenergy, 15, 467–473.

    Article  Google Scholar 

  • Kiniry, J. R., Williams, J. R., Gassman, P. W., & Debaeke, P. (1992). A general process-oriented model for two competing plant species. Transitions of the ASAE, 35, 801–810.

    Article  Google Scholar 

  • Kiniry, J. R., Burson, B., Evers, G., Williams, J., Sanchez, H., Wade, C., Featherston, J., & Greenwade, J. (2007). Coastal bermudagrass, bahiagrass, and native range simulation at diverse sites in Texas. Agronomy Journal, 99, 450–461.

    Article  Google Scholar 

  • Kiniry, J. R., Macdonald, J. D., Kemanian, A. R., Watson, B., Puzz, G., & Prepas, E. (2008). Plant growth simulation for landscape-scale hydrological modeling. Hydrological Sciences, 53, 1030–1042.

    Article  Google Scholar 

  • Kitajima, K., Mulkey, S. S., & Wright, S. J. (2005). Variation in crown light utilization characteristics among tropical canopy trees. Annual Botany, 95, 535–547.

    Article  Google Scholar 

  • Landsberg, J. (2003). Physiology in forest models: history and the future. FBMIS, 1, 49–63.

    Google Scholar 

  • Larocque, G. R. (2016). Ecological forest management handbook (p. 224). Boca Raton, FL: CRC Press.

    Google Scholar 

  • Lee, S. Y., Dunn, R. J. K., Young, R. A., Connolly, R. M., Dale, P. E. R., Dehayr, R., Lemckert, C. J., Mckinnon, S., Powell, B., Teasdale, P. R., & Welsh, D. T. (2006). Impact of urbanization on coastal wetland structure and function. Austral Ecology, 31, 149–163.

    Article  Google Scholar 

  • Li, S., Pezeshki, S. R., Goodwin, S., & Shields, F. D. (2004). Physiological responses of black willow (Salix nigra) cuttings to a range of soil moisture regimes. Photosynthetica, 42, 585–590.

    Article  CAS  Google Scholar 

  • Locke, S. L., Frentress, C., Cathey, J. C., Mason, C. D., Hirsch, R., & Wagner, M. W. (2007). Techniques for wetland construction and management. College Station, TX: AgriLife Extension College Station.

    Google Scholar 

  • Marin, F. R., Ribeiro, R. V., & Marchiori, P. E. R. (2014). How can crop modeling and plant physiology help to understand the plant responses to climate change? A case study with sugarcane. Theoretical and Experimental Plant Physiology, 26, 49–63.

    Article  CAS  Google Scholar 

  • Matula, R., Damborská, L., Nečasová, M., Geršl, M., & Šrámek, M. (2015). Measuring biomass and carbon stock in resprouting woody plants. PLoS One, 10(2), e0118388.

    Article  CAS  Google Scholar 

  • McKnight, J. S. (1965). Black willow (Salix nigra Marsh.). In H. A. Fowells (Ed.), Silvics of forest trees of the United States. U.S. Department of Agriculture, agriculture handbook 271 (pp. 650–652). Washington, DC: U.S. Department of Agriculture.

    Google Scholar 

  • Mecuccini, M., Martinex-Vilalta, J., Vanderklein, D., Hamid, H. A., Korakaki, E., Lee, S., & Michiels, B. (2005). Size-mediated ageing reduces vigor in trees. Ecology Letters, 8, 1183–1190.

    Article  Google Scholar 

  • Meki, M. N., Kiniry, J. R., Youkhana, A. H., Crow, S. E., Ogoshi, R. M., Nakahata, M. H., Tirado-Corbalá, R., Anderson, R. G., Osorio, J., & Jeong, J., (2015). Two-Year Growth Cycle Sugarcane Crop Parameter Attributes and Their Application in Modeling. Agronomy Journal, 107(4), 1310

    Article  Google Scholar 

  • Mendelssohn, I.A. (1993). Factors controlling the formation of oxidizing root channels: a review and annotated bibliography. Vicksburg, MS: Tech. report WRP-DE-5, US Army Engineer Waterway Experiment Station.

  • Mitsch, W. J., & Gosselink, J. G. (2015). Wetlands (p. 111). Hoboken, NJ: John Wiley and Sons.

    Google Scholar 

  • Monteith, J. L. (1977). Climate and efficiency of crop production in Britain (pp. 277–294). London: Philosophical Transactions of the Royal Society of London, Series B.

    Google Scholar 

  • NRCS, Natural Resources Conservation Service (2017). United States Dept. of Agric. web soil survey. Available online: http://websoilsurvey.sc.egov.usda.gov/App/WebSoilSurvey.aspx. Accessed 20 May 2017.

  • Parkes, D., Newell, G., & Cheal, D. (2003). Assessing the quality of native vegetation: the ‘habitat hectares’ approach. Ecological Management and Restoration, 4, S29–S38.

    Article  Google Scholar 

  • Pastor, J., & Post, W. M. (1985). Development of a linked forest productivity—soil process model, ORNL/TM-9579. Oak Ridge, TN: Oak Ridge National Laboratory.

    Google Scholar 

  • Pendergrass, K. L., Miller, P. M., & Kauffman, J. B. (1998). Prescribed fire and the response of woody species in Willamette Valley wetland prairies. Restoration Ecology, 6, 303–311.

    Article  Google Scholar 

  • Ramsar Convention Secretariat. (2010). Managing wetlands: frameworks for managing wetlands of international importance and other wetland sites. In Ramsar handbooks for the wise use of wetlands (Vol. 18, 4th ed.). Gland, Switzerland: Ramsar Convention Secretariat.

    Google Scholar 

  • Reily, P. W., & Johnson, W. C. (1982). The effects of altered hydrologic regime on tree growth along the Missouri River in North Dakota. Canadian Journal of Botany, 60, 2410–2423.

    Article  Google Scholar 

  • Rodríguez, R., Berenguel, M., Guzmán, J. L., & Ramírez-Arias, A. (2015). Modeling and control of greenhouse crop growth (p. 27). New York: Springer.

    Google Scholar 

  • Roseboom, D. (1993). Breakwater installation and vegetative stabilization in Illinois. In: Proceedings, U.S. Army Corps of Engineers workshop on reservoir shoreline erosion (pp. 166–173). Vicksburg: Army Corps of Engineers, Waterways Experiment Station. Publication No. W-93-1.

  • Row, J. M., & Geyer, W. A. (2010). Black willow Salix Nigra Marsh. Manhattan, KS: USDA NRCS Plant Material Center.

    Google Scholar 

  • Saintilan, N., & Imgraben, S. (2012). Principal for the monitoring and evaluation of wetland extent, condition and function in Australia. Environmental Monitoring Assessment, 184, 595–606.

    Article  Google Scholar 

  • Sharitz, R. R., & Gibbons. (1989). Freshwater wetlands and wildlife. Washington, DC: U.S. Dept. of Energy; Office of Health and Environmental Research.

    Google Scholar 

  • Shields Jr., F. D., Bowie, A. J., & Cooper, C. M. (1995). Control of streambank erosion due to bed degradation with vegetation and structure. Water Resources Bulletin, 31, 475–489.

    Article  Google Scholar 

  • Smith, P. D., Merritt, M., Nowak, D., & Hitchcock, D. (2005). Houston’s regional forest. U.S., Houston, TX: Forest Service—Texas Forest Service.

    Google Scholar 

  • Smith, L. M., Effland, W. R., Behrman, K. D., & Johnson, M. V. V. (2015). Assessing the effects of USDA conservation programs on ecosystem services provided by wetlands. National Wetlands Newsletter, 37(5), 10–14.

    Google Scholar 

  • van Splunder, I., Coops, H., & Schoor, M. (1994). Tackling the bank erosion problem: reintroduction of willow on riverbanks. Water Science Technology, 29, 379–381.

    Article  Google Scholar 

  • Stapanian, M. A., Adams, J. V., & Gara, B. (2013). Presence of indicator plant species as a predictor of wetland vegetation integrity: a statistical approach. Plant Ecology, 214, 291–302.

    Article  Google Scholar 

  • Swanson, C., & Fipps, G. (2013). The Texas ET network and website. Texas A&M AgriLife Extension Service, Texas A&M System. http://texaset.tamu.edu. Accessed 6 July 2018.

  • Teck, R. M., & Hilt, D. E. (1991). Individual-tree diameter growth model for the Northeastern United States. Radnor, PA: Northeastern Forest Experiment Station.

    Book  Google Scholar 

  • Thompson, R. B., Morse, D., Kelling, K., & Lanyon, L. (1997). Computer programs that calculate manure application rates. Journal of Production Agriculture, 10, 58–69.

    Article  Google Scholar 

  • TPWD (Texas Parks and Wildlife Department). (2012). Texas wetlands conservation plan. Austin, TX: Texas Wetlands Conservation Program Resource Protection Division.

    Google Scholar 

  • USEPA (United States Environmental Protection Agency). (2002). Methods for evaluation wetland condition: using vegetation to assess environmental conditions in wetlands. Washington, DC: Office of Water, U.S. Environmental Protection Agency.

    Google Scholar 

  • Wang, X., Saleh, A., McBroom, W., Williams, J. R., & Yin, L. (2007). Test of APEX for nine forested watersheds in east Texas. Journal of Environmental Quality, 36, 983–995.

    Article  CAS  Google Scholar 

  • Watson, C. C., Abt, S. R., & Derrick, D. (1997). Willow posts bank stabilization. Journal of the American Water Resources Association, 33, 293–300.

    Article  Google Scholar 

  • Welch, B. L. (1937). The significance of the difference between two means when the population variances are unequal. Biometrika, 29, 350–362.

    Article  Google Scholar 

  • Wilcox, R. R. (1990). Comparing the means of two independent groups. Biometrical Journal, 32, 771–780.

    Article  Google Scholar 

  • Williams, J. R., Jones, C. A., & Dyke, P. T. (1984). A modelling approach to determining the relationship between erosion and soil productivity. Transition ASAE, 27, 129–144.

    Article  Google Scholar 

  • Williams, J. R., Jones, C. A., Kiniry, J. R., & Spanel, D. A. (1989). The EPIC crop growth model. Transaction of the ASAE, 32, 497–511.

    Article  Google Scholar 

  • Williams, A. S., Kiniry, J. R., Mushet, D., Smith, L. M., McMurry, S., Attebury, K, Lang, M., McCarty, G. W., Shaffer, J. A., Effland, W. R., Johnson, M.-V. V., (2017) Model parameters for representative wetland plant functional groups. Ecosphere 8(10), e01958

    Article  Google Scholar 

  • Williams, J., Potter, S., Wang, X., Atwood, J., Norfleet, L., Gerik, T., Lemunyon, J., King, A., Steglich, E., Wang, C., Pitts, T., & Meinardus, A. (2010). APEX model validation for CEAP (pp. 1–13). Temple, TX: USDA—Natural Resources Conservation Service Available at https://www.nrcs.usda.gov/Internet/FSE_DOCUMENTS/stelprdb1042102.pdf.

    Google Scholar 

  • Yahya, Y., Ismail, R., Vanna, S., & Saret, K. (2012). Forest growth simulation: tropical rain forest stand table projection. International Journal of Mathematical, Computational, Physical, Electrical and Computer Engineering, 6, 606–611.

    Google Scholar 

  • Zedler, J. B., & Kercher, S. (2005). Wetlands resources: status, trends, ecosystem services, and restorability. Annual Review of Environment and Resources, 30, 39–74.

    Article  Google Scholar 

Download references

Acknowledgements

We are grateful to Amber Williams, Ricky Greeson, James P.S. Case, Andrea Russie, and Stephanie Silvia who helped collect morphological data. This work was conducted as part of the activities of the USDA Natural Resources Conservation Service Conservation Effects Assessment Project (NRCS-CEAP), Interagency Reimbursable Agreement #60-3098-5-006. This work was also supported in part by an appointment to the Agricultural Research Service administered by the Oak Ridge Institute for Science and Education through interagency agreement between the US Department of Energy (DOE) and the US Department of Agriculture (USDA), Agricultural Research Service Agreement #60-3098-5-002.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Su Min Kim.

Electronic supplementary material

ESM 1

(DOCX 109 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kim, S.M., Jeong, J., Keesee, D. et al. Development, growth, and biomass simulations of two common wetland tree species in Texas. Environ Monit Assess 190, 521 (2018). https://doi.org/10.1007/s10661-018-6859-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10661-018-6859-0

Keywords

Navigation