Advertisement

Decreasing δ13C and δ15N values in four coastal species at different trophic levels indicate a fundamental food-web shift in the southern North and Baltic Seas between 1988 and 2016

  • Anna-Marie Corman
  • Philipp Schwemmer
  • Moritz Mercker
  • Harald Asmus
  • Heinz Rüdel
  • Roland Klein
  • Markus Boner
  • Sabine Hofem
  • Jan Koschorreck
  • Stefan Garthe
Article

Abstract

Marine ecosystems are exposed to increasing human pressures and climatic change worldwide. It has therefore become essential to describe ecosystem statuses with respect to multinational protection schemes, often necessitating long-term monitoring programmes. Changes in the food-web structure, which can be monitored via stable isotope measurements, represent an important descriptor of the status of marine ecosystems. We investigated long-term changes (29 years) in isotopic values (δ13C and δ15N) in four indicative organisms at different trophic levels in the southern North and Baltic Seas: bladderwrack (Fucus vesiculosus), blue mussel (Mytilus ssp.), eelpout (Zoarces viviparus), and herring gull (Larus argentatus). Time series analyses using generalised additive models revealed largely consistent declines in δ13C and δ15N throughout all trophic levels of the coastal food web at all study sites, indicating a clear change in these coastal regions from 1988 to 2016. There were no clear long-term patterns in egg biometrics for herring gulls, except for a consistent increase in eggshell thickness. The declines in stable isotope values were in line with the results of previous long-term studies of single higher-trophic-level species, which suggested that the noted changes were mainly caused by altered foraging patterns of the studied species. The current results demonstrate that declines in δ13C and δ15N have occurred throughout the whole food web, not just in particular species. We discuss the possible reasons for the decrease in stable isotope values, including decreasing eutrophication and an increase in terrestrial carbon sources.

Keywords

Fucus vesiculosus Larus argentatus Mytilus ssp. Stable isotope Time series analysis Zoarces viviparus 

Notes

Acknowledgements

S. Furness provided language support.

Funding information

This study was funded by the German Federal Environmental Agency (UBA).

Supplementary material

10661_2018_6827_MOESM1_ESM.docx (29 kb)
ESM 1 (DOCX 28 kb)

References

  1. Akaike, H. (1973). Information theory and an extension of the maximum likelihood principle. In B. N. Petrov & F. Caski (Eds.), Proceeding of the Second International Symposium on Information Theory (pp. 267–281). Budapest: Akademiai Kiado.Google Scholar
  2. Almroth, E., & Skogen, M. D. (2010). A North Sea and Baltic Sea model ensemble eutrophication assessment. Ambio, 39, 59–69.CrossRefGoogle Scholar
  3. Amer, H. (1997). Application of multielement techniques for the fingerprinting of elemental contents in Fucus vesiculosus from the North Sea. Chemosphere, 34, 2123–2131.CrossRefGoogle Scholar
  4. Andersen, J. H., Carstensen, J., Conley, D. J., Dromph, K., Fleming-Lehtinen, V., Gustafsson, B. G., Josefson, A. B., Norkko, A., Villnäs, A., & Murray, C. (2015). Long-term temporal and spatial trends in eutrophication status of the Baltic Sea. Biological Reviews, 92, 135–149.  https://doi.org/10.1111/brv.12221.CrossRefGoogle Scholar
  5. Bao, J., Sherwood, S. C., Alexander, L. V., & Evans, J. P. (2017). Future increases in extreme precipitation exceed observed scaling rates. Nature Climate Change, 7, 128–132.CrossRefGoogle Scholar
  6. Baretta, J. W., Ruardij, P., Vested, H. J., & Baretta-Bekker, J. G. (1994). Eutrophication modelling of the North Sea: two different approaches. Ecological Modelling, 75–76, 471–483.CrossRefGoogle Scholar
  7. Barrett, R. T., Nilsen, E. B., & Anker-Nilssen, T. (2012). Long-term decline in egg size of Atlantic puffins Fratercula arctica is related to changes in forage fish stocks and climate conditions. Marine Ecological Progress Series, 457, 1–10.CrossRefGoogle Scholar
  8. Becker, P. H. & Muñoz Cifuentes, J. (2004). Contaminants in bird eggs: recent spatial and temporal trends. Wadden Sea Ecosystem No.18: 5–25. Common Wadden Sea Secretariat, Trilateral Monitoring and Assessment Group, Wilhelmshaven, Germany. http://www.waddensea-secretariat.org/sites/default/files/downloads/wse-18-cont-eggs-01.03.05.pdf. Accessed 17 November 2017.
  9. Bezzel, E., & Prinzinger, R. (1990). Ornithologie. Stuttgart: Ulmer.Google Scholar
  10. Brendel, C. & Deutschländer, T. (2017). Temporal development of extreme precipitation in Germany projected by EURO-CORDEX simulations. Geophysical Research Abstracts 19:EGU2017–7881. http://meetingorganizer.copernicus.org/EGU2017/EGU2017-7881.pdf. Accessed 17 November 2017.
  11. Christensen, J. T., & Richardson, K. (2008). Stable isotope evidence of long-term changes in the North Sea food web structure. Marine Ecology Progress Series, 368, 1–8.  https://doi.org/10.3354/meps07635.CrossRefGoogle Scholar
  12. Cloern, J. E. (2001). Our evolving conceptual model of the coastal eutrophication problem. Marine Ecology Progress Series, 210, 223–253.  https://doi.org/10.3354/meps210223.CrossRefGoogle Scholar
  13. Corman, A.-M., Mendel, B., Voigt, C. C., & Garthe, S. (2015). Varying foraging patterns in response to competition? A multicolony approach in a generalist seabird. Ecology and Evolution.  https://doi.org/10.1002/ece3.1884.CrossRefGoogle Scholar
  14. Corsolini, S., Borghesi, N., Ademollo, N., & Focardi, S. (2011). Chlorinated biphenyls and pesticides in migrating and resident seabirds from East and West Antarctica. Environment International, 37, 1329–1335.  https://doi.org/10.1016/j.envint.2011.05.017.CrossRefGoogle Scholar
  15. Elliott, M., & Griffiths, A. H. (1986). Mercury contamination in components of an estuarine ecosystem. Water Science & Technology, 18, 161–170.CrossRefGoogle Scholar
  16. European Commission (2008). Marine Strategy Framework Directive 2008/56/EC. http://ec.europa.eu/environment/marine/eu-coast-and-marine-policy/marine-strategy-framework-directive/index_en.htm. Accessed 17 November 2017.
  17. Farmer, R. G., & Leonard, M. L. (2011). Long-term feeding ecology of Great Black-backed Gulls (Larus marinus) in the northwest Atlantic: 110 years of feather isotope data. Canadian Journal of Zoology, 89, 125–133.CrossRefGoogle Scholar
  18. Fliedner, A., Rüdel, H., Jürling, H., Müller, J., Neugebauer, F., & Schröter-Kermani, C. (2012). Levels and trends of industrial chemicals (PCBs, PFCs, PBDEs) in archived herring gull eggs from German coastal regions. Environmental Sciences Europe, 24, 7.  https://doi.org/10.1186/2190-4715-24-7.CrossRefGoogle Scholar
  19. Fox, G. A. (1976). Eggshell quality: its ecological and physiological significance in a DDE-contaminated Common Tern population. Wilson Bulletin, 88, 459–477.Google Scholar
  20. Fry, B. (2006). Stable isotope ecology. New York: Springer.CrossRefGoogle Scholar
  21. Furness, R. W., & Camphuysen, C. J. (1997). Seabirds as monitors of the marine environment. ICES Journal of Marine Science, 54, 726–737.CrossRefGoogle Scholar
  22. Furness, R. W., & Monaghan, P. (1987). Seabird ecology. New York: Chapman & Hall.Google Scholar
  23. Green, N., Bjerkeng, B., Hylland, K., Ruus, A., & Rygg, B. (2003). Hazardous substances in the European marine environment: trends in metals and persistent organic pollutants (pp. 6–60). Copenhagen: European Environment Agency.Google Scholar
  24. Inger, R., & Bearhop, S. (2008). Applications of stable isotope analyses to avian ecology. Ibis, 150, 447–461.CrossRefGoogle Scholar
  25. Isaksson, N., Evans, N. J., Shamoun-Baranes, J., & Åkesson, S. (2016). Land or sea? Foraging area choice during breeding by an omnivorous gull. Movement Ecology.  https://doi.org/10.1186/s40462-016-0078-5.
  26. Jennings, S., & van der Molen, J. (2015). Trophic levels of marine consumers from nitrogen stable isotope analysis: estimation and uncertainty. ICES Journal of Marine Science, 72(8), 2289–2300.  https://doi.org/10.1093/icesjms/fsv120.CrossRefGoogle Scholar
  27. Keeling, C. D. (1979). The Suess effect: 13Carbon−14Carbon interactions. Environment International, 2, 229–300.CrossRefGoogle Scholar
  28. Klein, R., Bartel, M., Paulus, M., Quack, M., Tarricone, K., Teubner, D., Wagner, G. (2010). Guideline for sampling and sample treatment—eelpout (Zoarces viviparus). German Federal Environmental Agency. https://www.umweltprobenbank.de/en/documents/publications/14526 Accessed 17 November 2017.
  29. Kubetzki, U., & Garthe, S. (2003). Distribution, diet and habitat selection by four sympatrical gull species in the southeastern North Sea. Marine Biology, 143, 199–207.CrossRefGoogle Scholar
  30. Layman, C. A., Araujo, M. S., Boucek, R., Hammerschlag-Peyer, C. M., Harrison, E., Jud, Z. R., et al. (2012). Applying stable isotopes to examine food-web structure: an overview of analytical tools. Biological Reviews of the Cambridge Philosophical Society, 87, 545–562.CrossRefGoogle Scholar
  31. Lefebvre, A., Guiselin, N., Barbet, F., & Artigas, F. L. (2011). Long-term hydrological and phytoplankton monitoring (1992–2007) of three potentially eutrophic systems in the eastern English Channel and the Southern Bight of the North Sea. ICES Journal of Marine Science, 68, 2029–2043.  https://doi.org/10.1093/icesjms/fsr149.CrossRefGoogle Scholar
  32. Lindenmayer, D. B., Likens, G. E., Andersen, A., Bowman, D., Bull, C. M., Burns, E., Dickman, C.R., Hoffmann, A. A., Keith, D. A., Liddell, M. J., Lowe, A. J., Metcalfe, D. J., Phinn, S. R., Russell-Smith, J., Thurgate, N., & Wardle, G. M. (2012). Value of long-term ecological studies. Austral Ecology, 37(7), 745–757.  https://doi.org/10.1111/j.1442-9993.2011.02351.x.CrossRefGoogle Scholar
  33. Likens, G. E. (Ed.). (1989). Long-term studies in ecology: Approaches and alternatives. New York: Springer.Google Scholar
  34. MacKenzie, K. M., Longmore, C., Preece, C., Lucas, C. H., & Trueman, C. N. (2014). Testing the long-term stability of marine isoscapes in shelf seas using jellyfish tissues. Biogeochemistry, 121, 441–454.CrossRefGoogle Scholar
  35. Magurran, A. E., Baillie, S. R., Buckland, S. T., Dick, J. M., Elston, D. A., Scott, E. M., Smith, R. I., Somerfield, P. J., & Watt, A. D. (2010). Long-term datasets in biodiversity research and monitoring: assessing change in ecological communities through time. Trends in Ecology and Evolution, 25, 574–582.CrossRefGoogle Scholar
  36. McClelland, J. W., Valiela, I., & Michener, R. H. (1997). Nitrogen-stable isotope signatures in estuarine food webs: a record of increasing urbanization in coastal watersheds. Limnology and Oceanography, 42, 930–937.CrossRefGoogle Scholar
  37. McGowan, J. A. (1990). Climate and change in oceanic ecosystems: the value of time-series data. Trends in Ecology and Evolution, 5, 293–299.CrossRefGoogle Scholar
  38. Michener, R., & Kaufman, L. (2008). Stable isotope ratios as tracers in marine food webs: an update. In R. Michener & K. Lajtha (Eds.), Stable isotopes in ecology and environmental science (pp. 238–282). New York: Blackwell.Google Scholar
  39. Paulus, M., Bartel, M., Klein, R., Quack, M., Tarricone, K., Teubner, D., Wagner, G. (2010). Guideline for sampling and sample treatment—herring gull (Larus argentatus). German Federal Environmental Agency. https://www.umweltprobenbank.de/en/documents/publications/11893 Accessed 17 November 2017.
  40. Phelps, J. J. C. (2015). Modelling large-scale CO2 leakages in the North Sea. International Journal of Greenhouse Gas Control, 38, 210–220.CrossRefGoogle Scholar
  41. Pierotti, R., & Annett, C. (1991). Diet choice in the herring gull: constraints imposed by reproductive and ecological factors. Ecology, 72, 319–328.CrossRefGoogle Scholar
  42. Post, D. M. (2002). Using stable isotopes to estimate trophic position: models, methods, and assumptions. Ecology, 83, 703–718.CrossRefGoogle Scholar
  43. Quack, M., Bartel-Steinbach, T., Klein, R., Paulus, M., Tarricone, K., Teubner, D., Wagner, G. (2010). Richtlinie zur Probenahme und Probenbearbeitung - Blasentang (Fucus vesiculosus). German Federal Environment Agency. https://www.umweltprobenbank.de/en/documents/publications/20550 Accessed 17 November 2017.
  44. Quay, P., Sonnerup, R., Stutsman, J., Maurer, J., Körtzinger, J., Padin, X. A., & Robinson, C. (2007). Anthropogenic CO2 accumulation rates in the North Atlantic Ocean from changes in the 13C/12C of dissolved inorganic carbon. Global Biogeochemical Cycles, 21, GB1009.  https://doi.org/10.1029/2006GB002761.CrossRefGoogle Scholar
  45. Ratcliffe, D. A. (1967). Decrease in eggshell weight in certain birds of prey. Nature, 215, 208–210.CrossRefGoogle Scholar
  46. Ratcliffe, D. A. (1970). Changes attributable to pesticides in egg breakage frequency and eggshell thickness in some British birds. Journal of Applied Ecology, 7, 67–115.CrossRefGoogle Scholar
  47. Rüdel, H., Lepper, P., Steinhanses, J., & Schröter-Kermani, C. (2003). Retrospective monitoring of organotin compounds in marine biota from 1985 to 1999. Results from the German Environmental Specimen Bank. Environment Science & Technology, 37, 1731–1738.CrossRefGoogle Scholar
  48. Rüdel, H., Uhlig, S., Weingärtner, M. (2009). Guidelines for sampling and sample processing: pulverisation and homogenisation of environmental samples by cryomilling. German Federal Environment Agency. https://www.umweltprobenbank.de/en/documents/publications/11939 Accessed 17 November 2017.
  49. Schuster, U., Watson, A. J., Bates, N. R., Corbiere, A., Gonzales-Davila, M., Metzl, N., Pierrot, D., & Santana-Casiano, M. (2009). Trends in North Atlantic sea-surface CO2 from 1990 to 2006. Deep-Sea Research II, 23.  https://doi.org/10.1016/j.dsr2.2008.12.011.CrossRefGoogle Scholar
  50. Schwemmer, P., & Garthe, S. (2008). Regular habitat switch as an important feeding strategy of an opportunistic seabird species at the interface between land and sea. Estuarine Coastal Shelf Science, 77, 12–22.CrossRefGoogle Scholar
  51. Southward, A. J., Langmead, O., Hardman-Mountford, N. J., Aiken, J., Boalch, G. T., Dando, P., et al. (2005). Long-term oceanographic and ecological research in the Western English Channel. Advances in Marine Biology, 47, 1–105.Google Scholar
  52. Stevenson, I. R., & Bryant, D. M. (2000). Climate change and constraints on breeding. Nature, 406, 366–367.CrossRefGoogle Scholar
  53. Suess, H. E. (1955). Radiocarbon concentration in modern wood. Science, 122(3166), 415–417.CrossRefGoogle Scholar
  54. Thompson, D. R., Furness, R. W., & Lewis, S. A. (1995). Diets and long-term changes in δ15N and δ13C values in northern fulmars Fulmarus glacialis from two northeast Atlantic colonies. Marine Ecological Progress Series, 125, 3–11.CrossRefGoogle Scholar
  55. Tomassini, L., & Jacob, D. (2009). Spatial analysis of trends in extreme precipitation events in high-resolution climate model results and observations for Germany. Journal of Geophysical Research, 114, D12113.  https://doi.org/10.1029/2008JD010652.CrossRefGoogle Scholar
  56. van Beusekom, J., Bot, P., Göbel, J., Hanslik, M., Lenhart, H.J., Pätsch, J. et al. (2005). Eutrophication. In: K. Essink, C. Dettmann, H. Farke, K. Laursen, G. Lüerßen, H. Marencic, W. Wiersinga (Eds.), Wadden Sea Quality Status Report 2004. Wadden Sea Ecosystem No. 19. Trilateral Monitoring and Assessment Group, Common Wadden Sea Secretariat, Wilhelmshaven, Germany. http://www.waddensea-secretariat.org/sites/default/files/downloads/1_pdfsam_qsr2004.pdf Accessed 17 November 2017.
  57. Van der Zanden, M. J., & Rasmussen, J. B. (1999). Primary consumer δ13C and δ15N and the trophic position of aquatic consumers. Ecology, 80, 1395–1404.CrossRefGoogle Scholar
  58. Vander Pol, S. S., & Becker, P. R. (2007). Monitoring contaminants in seabirds: the importance of specimen banking. Marine Ornithology, 35, 113–118.Google Scholar
  59. Wagner, G., Bartel, M., Klein, R., Paulus, M., Quack, M., Tarricone, K., Teubner, D. (2011). Richtlinie zur Probenahme und Probenbearbeitung - Miesmuschel (Mytilus edulis). German Federal Environmental Agency. https://www.umweltprobenbank.de/en/documents/publications/20492 Accessed at 17 November 2017.
  60. Winde, V., Böttcher, M. E., Voss, M., & Mahler, A. (2017). Bladder wrack (Fucus vesiculosus) as a multi-isotope bio-monitor in an urbanized fjord of the western Baltic Sea. Isotopes in Environmental and Health Studies, 53, 563–579.CrossRefGoogle Scholar
  61. Wood, S. N. (2006). Generalized additive models: an introduction with R. London: Chapman and Hall.CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • Anna-Marie Corman
    • 1
  • Philipp Schwemmer
    • 1
  • Moritz Mercker
    • 2
  • Harald Asmus
    • 3
  • Heinz Rüdel
    • 4
  • Roland Klein
    • 5
  • Markus Boner
    • 6
  • Sabine Hofem
    • 6
  • Jan Koschorreck
    • 7
  • Stefan Garthe
    • 1
  1. 1.Research & Technology Centre (FTZ)Kiel UniversityBüsumGermany
  2. 2.BIONUM Büro für BiostatistikHamburgGermany
  3. 3.Alfred Wegener InstituteList/SyltGermany
  4. 4.Fraunhofer Institute for Molecular Biology and Applied Ecology IMESchmallenbergGermany
  5. 5.Insitute of BiogeographyUniversity of TrierTrierGermany
  6. 6.Agroisolab GmbHJülichGermany
  7. 7.Federal Environmental AgencyBerlinGermany

Personalised recommendations