Skip to main content

Advertisement

Log in

The assessment and prediction of temporal variations in surface water quality—a case study

  • Published:
Environmental Monitoring and Assessment Aims and scope Submit manuscript

Abstract

In order to optimize the processes of sampling, monitoring, and management, the initial aim of this paper was to develop a model for the definition and prediction of temporal changes of water quality. In the case of the Morava River Basin (Serbia), the patterns of temporal changes have been recognized by applying different multivariate statistical techniques. The results of the conducted cluster analysis are the indicators of the existence of the three monitoring periods: the low-water, transitional, and high-water periods, which is in accordance with changes in the water flow in the analyzed river basin. A possibility of reducing the initial data set and recognizing the main pollution sources was examined by carrying out the principal component/factor analysis. The results indicate that the natural factor has a dominant influence in temporal groups. In order to recognize the discriminatory water quality parameters, a discriminant analysis (DA) was carried out. Conducting the DA enabled a significant reduction in the data set by the extraction of two parameters (the water temperature and electrical conductivity). Furthermore, the artificial neural network technique was used for testing the possibility of predicting changes in the values of the discriminant factors in the monitoring periods. The reliability of this method for the prediction of temporal variations of both extracted parameters within all temporal clusters has been proven.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Abrahart, R. J., Anctil, F., Coulibaly, P., Dawson, C. W., Mount, N. J., See, L. M., Shamseldin, A. Y., Solomatine, D. P., Toth, E., & Wilby, R. L. (2012). Two decades of anarchy? Emerging themes of outstanding challenges for neural network river forecasting. Progressive Physical Geography, 36(4), 480–513.

    Google Scholar 

  • Abudu, S., King, J. P., & Sheng, Z. P. (2012). Comparison of the performance of statistical models in forecasting monthly total dissolved solids in the Rio Grande. Journal of American Water Resources Association, 48(1), 10–23.

    Article  Google Scholar 

  • Antanasijević, D., Pocajt, V., Povrenović, D., Perić-Grujić, A., & Ristić, M. (2013). Modelling of dissolved oxygen content using artificial neural networks: Danube River, North Serbia, case study. Environmental Science and Pollution Research, 20, 9006–9013.

    Article  CAS  Google Scholar 

  • Astel, A., Tksakouski, S., Barbieri, P., & Simeonov, V. (2007). Comparison of self-organizing maps classification approach with cluster and principal component analysis for large environmental data sets. Water Research, 41, 4566–4578.

    Article  CAS  Google Scholar 

  • Azhar, S. C., Aris, A. Z., Yusoff, M. K., Ramli, M. F., & Juahir, H. (2015). Classification of river water quality using multivariate analysis. Procedia Environmental Sciences, 30, 79–84.

    Article  CAS  Google Scholar 

  • Barakat, A., El Baghdadi, M., Rais, J., Aghezzaf, B., & Slassi, M. (2016). Assessment of spatial and seasonal water quality variation of Oum Er Rbia River (Morocco) using multivariate statistical techniques. International Soil and Water Conservation Research, 4, 284–292.

    Article  Google Scholar 

  • Bengraïne, K., & Marhaba, T. F. (2003). Using principal component analysis to monitor spatial and temporal changes in water quality. Journal of Hazardous Materials, B100, 179–195.

    Article  CAS  Google Scholar 

  • Boyacioglu, H., & Boyacioglu, H. (2007). Surface water quality assessment by environmetric methods. Environmental Monitoring and Assessment, 131(1–3), 371–376.

    Article  CAS  Google Scholar 

  • Brankov, J., Milijašević, D., & Milanović, A. (2012). The assessment of the surface water quality using the water pollution index: a case study of the Timok River (The Danube River Basin), Serbia. Archives of Environmental Protection, 38(1), 49–61.

    Article  CAS  Google Scholar 

  • Brion, G. M., Neelakantan, T. R., & Lingireddy, S. (2001). Using neural networks to predict peak Cryptosporidium concentrations. Journal of American Water Works Association, 93(1), 99–105.

    Article  Google Scholar 

  • Chang, H. J. (2005). Spatial and temporal variations of water quality in in the Han River and its tributaries, Seoul, Korea, 1993-2002. Water, Air and Soil Pollution, 161, 267–284.

    Article  CAS  Google Scholar 

  • Chen, W. B., & Liu, W. C. (2014). Artificial neural network modeling of dissolved oxygen in reservoir. Environmental Monitoring and Assessment, 186(2), 1203–1217.

    Article  CAS  Google Scholar 

  • Chen, L., & Zhang, X. (2009). Application of artificial neural network to classify water quality of the Yellow River. Journal of Fuzzy Information and Engineering, 15–23.

  • Dawe, P. (2006). A statistical evaluation of water quality trends in selected water bodies of Newfoundland and Labrador. Journal of Environmental Engineering and Science, 5(1), 59–73.

    Article  CAS  Google Scholar 

  • Dević, G., Djordjević, D., & Sakan, S. (2014). Natural and anthropogenic factors affecting the groundwater quality in Serbia. Science of the Total Environment, 468–469, 933–942.

    Article  Google Scholar 

  • Durdu, O. F. (2010). A hybrid neural network and ARIMA model for water quality time series prediction. Engineering Applications of Artificial Intelligence, 24, 586–594.

    Google Scholar 

  • Gamble, A., & Babbar-Sebens, M. (2012). On the use of multivariate statistical methods for combining in-stream monitoring data and spatial analysis to characterize water quality conditions in the White River Basin, Indiana, USA. Environmental Monitoring and Assessment, 184, 845–875.

    Article  Google Scholar 

  • Helena, B., Pardo, R., Vega, M., Barrado, E., Fernandez, J. M., & Fernandez, L. (2000). Temporal evolution of groundwater composition in an alluvial aquifer (Pisuerga River, Spain) by principal component analysis. Water Research, 34, 807–816.

    Article  CAS  Google Scholar 

  • Huang, F., Wang, X., Lou, L., Zhou, Z., & Wu, J. (2010). Spatial variation and source apportionment of water pollution in Qiantang River (China) using statistical techniques. Water Research, 44(5), 1562–1572.

    Article  CAS  Google Scholar 

  • Iscen, F. C., Emiroglu, Ӧ., Ilhan, S., Arslan, N., Yilmaz, V., & Ahiska, S. (2008). Application of multivariate statistical techniques in the assessment of surface water quality in Ulabat Lake, Turkey. Environmental Monitoring and Assessment, 144, 269–276.

    Article  CAS  Google Scholar 

  • Kazi, T. G., Arain, M. B., Jamali, M. K., Jalbani, N., Afridi, H. I., Sarfraz, R. A., Baig, J. A., & Shah, A. Q. (2009). Assessment of water quality of polluted lake using multivariate statistical techniques: a case study. Ecotoxicology and Environmental Safety, 72(20), 301–309.

    Article  CAS  Google Scholar 

  • Kolarević, S., Knežević-Vukčević, J., Paunović, M., Tomović, J., Gačić, Z., & Vuković-Gačić, B. (2011). The anthropogenic impact on water quality of the river Danube in Serbia: microbiological analysis and genotoxicity monitoring. Archives of Biological Sciences, 63(4), 1209–1217.

    Article  Google Scholar 

  • Kolarević, S., Kolarević, S., Knežević-Vukčević, J., Paunović, M., Vasiljević, B., Kračun, M., Gačić, Z., & Vuković-Gačić, B. (2012). Seasonal variations of microbiological parameters of water quality of the Velika Morava River, Serbia. Archives of Biological Sciences, 64(3), 1017–1027.

    Article  Google Scholar 

  • Kolarević, S., Knežević-Vukčević, J., Paunović, M., Kračun, M., Vasiljević, B., Tomović, J., Vuković-Gačić, B., & Gačić, Z. (2013). Monitoring of DNA damage in haemocytes of freshwater mussel Sinanodonta woodiana sampled from the Velika Morava River in Serbia with the comet assay. Chemosphere, 93(2), 243–251.

    Article  CAS  Google Scholar 

  • Liu, W. X., Lia, X. D., Shena, Z. G., Wanga, D. C., Waia, O. W. H., & Lia, Y. S. (2003). Multivariate statistical study of heavy metal enrichment in sediments of the Pearl River Estuary. Environmental Pollution, 121(3), 377–388.

    Article  CAS  Google Scholar 

  • Maier, H. R., & Dandy, G. C. (2000). Neural networks for the prediction and forecasting of water resources variables: a review of modelling issues and applications. Environmental Modelling & Software, 15, 101–124.

    Article  Google Scholar 

  • Maier, H. R., Jain, A., Diy, G. C., & Sudheer, K. P. (2010). Methods used for the development of neural networks for the prediction of water resource variables in river systems: current status and future directions. Environmental Modelling and Software, 25, 891–909.

    Article  Google Scholar 

  • Marković, S. G., & Veljović, S. P. (2005). Biotic indices to be used for assessment of Ichthyofauna structure of the Zapadna Morava River (West Serbia, the Danube Basin). Zbornik Matice Srpske Za Prirodne Nauke, 109, 29–37.

    Article  Google Scholar 

  • Mellit, A., Kalogirou, S. A., Hontoria, L., & Shaari, S. (2009). Artificial intelligence techniques for sizing photovoltaic systems: a review. Renewable and Sustainable Energy Reviews, 13(2), 406–419.

    Article  CAS  Google Scholar 

  • Meybeck, M. (2002). Riverine quality at the Anthropocene: propositions for global space and time analysis, illustrated by Seine River. Aquatic Sciences, 64(4), 376–393.

    Article  Google Scholar 

  • Milanović, A., Kovačević-Majkić, J., & Milivojević, M. (2010). Water quality analysis of Danube River in Serbia: pollution and protection problems. Glasnik Srpskog Geografskog Društva, 90(2), 47–68.

    Article  Google Scholar 

  • Milenković, N., Damjanović, M., & Ristić, M. (2005). Study of heavy metal pollution in sediments from the Iron Gate (Danube River), Serbia and Montenegro. Polish Journal of Environmental Studies, 14(6), 781–787.

    Google Scholar 

  • Mladenović-Ranisavljević, I., Takić, L., Vuković, M., Nikolić, Đ., Živković, N., & Milosavljević, P. (2012). Multi-criteria ranking of the Danube water quality on its course through Serbia. Serbian Journal of Management, 7(2), 299–307.

    Article  Google Scholar 

  • Mrazovac, S., Vojinović-Miloradov, M., Matić, I., & Marić, N. (2013). Multivariate statistical analyzing of chemical parameters of groundwater in Vojvodina. Chemie der Erde – Geochemistry, 73(2), 217–225.

    Article  CAS  Google Scholar 

  • Palani, S., Liong, S., & Tkalich, P. (2008). An ANN application for water quality forecasting. Marine Pollution Bulletin, 56, 1586–1597.

    Article  CAS  Google Scholar 

  • Paunović, M. M., Jakovčev-Todorović, G. D., Simić, M. V., Bojana, D., Stojanović, D. B., & Cakić, D. P. (2007). Macroinvertebrates along the Serbian section of the Danube River (stream km 1429–925). Biologia, 62(2), 214–221.

    Article  Google Scholar 

  • Phung, D., Huang, C., Rutherford, S., Dwirahmadi, F., Chu, C., Wang, X., & Dinh, T. A. (2015). Temporal and spatial assessment of river surface water quality using multivariate statistical techniques: a study in Can Tho City, a Mekong Delta area, Vietnam. Environmental Monitoring and Assessment, 187(5), 1–13.

    Article  CAS  Google Scholar 

  • Quadir, A., Malik, R. N., & Husain, S. Z. (2007). Spatio-temporal variations in water quality of Nullah Aik—tributary of the river Chenab, Pakistan. Environmental Monitoring and Assessment, 140(1–3), 43–59.

    Google Scholar 

  • Ranković, V., Radulović, J., Radojević, I., Ostojić, A., & Čomić, L. J. (2010). Neural network modelling of dissolved oxygen in the Gruža reservoir, Serbia. Ecological Modelling, 221, 1239–1244.

    Article  CAS  Google Scholar 

  • Santos-Roman, D. M., Warner, G. S., & Scatena, F. (2003). Multivariate analysis of water quality and physical characteristics of selected watersheds in Puerto Rico. Journal of the American Water Resources Association, 39(4), 829–839.

    Article  CAS  Google Scholar 

  • Sharma, N., Chaudhry, K. K., & Chalapati-Rao, C. V. (2005). Vehicular pollution modelling using artificial neural network technique: a review. Journal of Science and Industrial Research, 64(9), 637–647.

    Google Scholar 

  • Shrestha, S., & Kazama, F. (2007). Assessment of surface water quality using multivariate statistical techniques: a case study of the Fuji River Basin, Japan. Environmental Modelling and Software, 22, 464–475.

    Article  Google Scholar 

  • Šiljić, A., Antanasijević, D., Perić-Grujić, A., Ristić, M., & Pocajt, V. (2015). Artificial neural network modelling of biological oxygen demand in rivers at the national level with input selection based on Monte Carlo simulations. Environmental Science and Pollution Research, 22, 4230–4241.

    Article  CAS  Google Scholar 

  • Šiljić-Tomić, A., Antanasijević, D., Ristić, M., Perić-Grujić, A., & Pocajt, V. (2016). Modeling the BOD of Danube River in Serbia using spatial, temporal, and input variables optimized artificial neural network models. Environmental Monitoring and Assessment, 188, 300.

    Article  CAS  Google Scholar 

  • Simeonov, V., Einax, W. J., Stanimirova, I., & Kraft, J. (2002). Environmetric modelling and interpretation of river water monitoring data. Analytical and Bioanalytical Chemistry, 374(5), 898–905.

    Article  CAS  Google Scholar 

  • Simeonov, V., Stratis, J. A., Samara, C., Zachariadis, G., Voutsa, D., Anthemidis, A., Sofoniou, M., & Koumitzis, T. (2003). Assessment of the surface water quality in Northern Greece. Water Research, 37, 4119–4124.

    Article  CAS  Google Scholar 

  • Singh, K. P., Malik, A., Mohan, D., & Sinha, S. (2004). Multivariate statistical techniques for the evaluation of spatial and temporal variations in water quality of Gomti River (India)—a case study. Water Research, 38, 3980–3992.

    Article  CAS  Google Scholar 

  • Singh, K. P., Basant, A., Malik, A. & Jain, G. (2009). Artificial neural network modelling of the river water quality – a case study. Ecological Modelling, 220, 888–895.

  • Sojka, M., Siepak, M., Ziola, A., Frankowski, M., Murat-Blazejewska, S., & Siepak, J. (2008). Application of multivariate statistical techniques to evaluation of water quality in the Mala Welna River (Western Poli). Environmental Monitoring and Assessment, 147, 159–170.

    Article  CAS  Google Scholar 

  • Soypak, S., Karaer, F., Gurbuz, H., Kivrak, E., Senturk, E., & Yazici, A. (2003). A neural network-based approach for calculating dissolved oxygen profiles in reservoirs. Neural Computation and Application, 12(3–4), 166–172.

    Article  Google Scholar 

  • Stubblefield, A. P., Reuter, J. E., Dahlgren, R. A., & Goldman, C. R. (2007). Use of turbidometry to characterize suspended sediment and phosphorous fluxes in the Lake Tahoe Basin, California, USA. Hydrological Processes, 21, 281–291.

    Article  Google Scholar 

  • Takić, L., Živković, N., Đorđević, A., & Ranđelović, L. J. (2012). Identification of pollution sources in the South Morava river using the index method. Facta Universitatis: Working and Living Environmental Protection, 9(1), 11–17.

    Google Scholar 

  • Tanasković, I., Golobocanin, D., & Miljević, N. (2012). Multivariate statistical analysis of hydrochemical and radiological data of Serbian spa waters. Journal of Geochemical Exploration, 112, 226–234.

    Article  CAS  Google Scholar 

  • Varol, M., & Ṣen, B. (2009). Assessment of surface water quality using multivariate statistical techniques: a case study of Behrimaz Stream, Turkey. Environmental Monitoring and Assessment, 159, 543–553.

    Article  CAS  Google Scholar 

  • Varol, M., Gökot, B., Bekleyen, A. & Şen, B. (2012). Spatial and temporal variations in surface water quality of the dam reservoirs in the Tigris River basin, Turkey. Catena, 92, 11–21.

  • Vega, M., Pardo, R., Barrado, E., & Deban, L. (1998). Water quality assessment and apportionment of pollution sources of Tigris river (Turkey) using multivariate statistical techniques—a case study. River Research and Applications, 28, 1428–1438.

    Google Scholar 

  • Velјković, N., Popović, T., Jovičić, M., & Dopuđa-Glišić, T. (2012). Uticaj klimatskih faktora na kvalitet vodotokova Pomoravlјa: Analiza metodom SSWQIRB. Voda I Sanitarna Tehnika, 5-6, 31–39.

    Google Scholar 

  • Voza, D., Vuković, M., Takić, L., & Arsić, M. (2015a). Spatial and seasonal variations in the water quality of the Morava River system, Serbia. Fressenius Environmental Bulletin, 24(3), 1119–1130.

    Google Scholar 

  • Voza, D., Vuković, M., Takić, L., Nikolić, Đ., & Mladenović-Ranisavljević, I. (2015b). Application of multivariate statistical techniques in the water quality assessment of the Danube River, Serbia. Archives of Environmental Protection, 41(4), 96–103.

    Article  Google Scholar 

  • Wechmongkhonkon, S., Poomtong, N., & Areerachakul, S. (2012). Application of artificial neural network to classification surface water quality. World Academy of Science, Engineering and Technology, 6(9), 574–578.

    Google Scholar 

  • Wu, W., Dandy, G. C., & Maier, H. R. (2014). Protocol for developing ANN models and its application to the assessment of the quality of the ANN model development process in drinking water quality modelling. Environmental Modelling and Software, 54, 108–127.

    Article  Google Scholar 

  • Wunderlin, D. A., Diaz, M. P., Ame, M. V., Pesce, S. F., Hued, A. C., & Bistoni, M. A. (2001). Pattern recognition techniques for the evaluation of spatial and temporal variations in water quality. A case study: Suquia river Basin (Cordoba, Argentina). Water Research, 35(12), 2881–2894.

    Article  CAS  Google Scholar 

  • Yunrong, X., & Liangzhong, J. (2009). Water quality prediction using LS-SVM with particle swarm optimization. Second International Workshop on Knowledge Discovery and Data Mining, 900–904.

  • Zhang, Y., Guo, F., Meng, W., & Wang, X. Q. (2009). Water quality assessment and source identification of Daliao River Basin using multivariate statistical methods. Environmental Monitoring and Assessment, 152(1–4), 105–121.

    Article  CAS  Google Scholar 

  • Zhang, X., Wang, Q., Liu, Y., Wu, J., & Yu, M. (2011). Application of multivariate statistical techniques in the assessment of water quality in the Southwest New Territories and Kowloon, Hong Kong. Environmental Monitoring and Assessment, 173, 17–27.

    Article  Google Scholar 

  • Zhou, F., Liu, Y., & Guo, H. (2007). Application of multivariate statistical methods to water quality assessment of the watercourses in Northwestern New Territories, Hong Kong. Environmental Monitoring and Assessment, 132, 1–13.

    Article  CAS  Google Scholar 

  • Živadinović, I., Ilijević, K., Gržetić, I., & Popović, A. (2010). Long-term changes in the eco-chemical status of the Danube River in the region of Serbia. Journal of Serbian Chemical Society, 75(8), 1125–1148.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

Prepared as a part of the project Sustainability of the Identity of Serbs and National Minorities in the Border Municipalities of Eastern and Southeastern Serbia (179013) conducted at the University of Niš—Faculty of Mechanical Engineering and supported by the Ministry of Science and Technological Development of the Republic of Serbia.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Danijela Voza.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Voza, D., Vuković, M. The assessment and prediction of temporal variations in surface water quality—a case study. Environ Monit Assess 190, 434 (2018). https://doi.org/10.1007/s10661-018-6814-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10661-018-6814-0

Keywords

Navigation