Skip to main content
Log in

Does intrinsic light heterogeneity in Ricinus communis L. monospecific thickets drive species’ population dynamics?

  • Published:
Environmental Monitoring and Assessment Aims and scope Submit manuscript

Abstract

Ricinus communis L. colonizes heterogeneous urban landscapes as monospecific thickets. The ecological understanding on colonization success of R. communis population due to variable light availability is lacking. Therefore, to understand the effect of intrinsic light heterogeneity on species’ population dynamics, R. communis populations exposed to variable light availability (low, intermediate, and high) were examined for performance strategies through estimation of key vegetative, eco-physiological, biochemical, and reproductive traits. Considerable variability existed in studied plant traits in response to available light. Individuals inhabiting high-light conditions exhibited high eco-physiological efficiency and reproductive performance that potentially confers population boom. Individuals exposed to low light showed poor performance in terms of eco-physiology and reproduction, which attribute to bust. However, individuals in intermediate light were observed to be indeterminate to light availability, potentially undergoing trait modulations with uncertainty of available light. Heterogeneous light availability potentially drives the boom and bust cycles in R. communis monospecific thickets. Such boom and bust cycles subsequently affect species’ dominance, persistence, collapse, and/or resurgence as an aggressive colonizer in contrasting urban environments. The study fosters extensive monitoring of R. communis thickets to probe underlying mechanism(s) affecting expansions and/or collapses of colonizing populations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Anjani, K. (2012). Castor genetic resources: a primary gene pool for exploitation. Industrial Crops and Products, 35, 1–14.

    Article  Google Scholar 

  • Anonymous (2006). Economic survey of Delhi. Planning Department, Government of National Capital Territory of Delhi (pp. 1–7): New Delhi.

  • Barthod, S., & Epron, D. (2005). Variations of construction cost associated to leaf area renewal in saplings of two co-occurring temperate tree species (Acer platanoides L. and Fraxinus excelsior L.) along a light gradient. Annals of Forest Science, 62, 545–551.

    Article  Google Scholar 

  • Bates, L. S., Waldren, R. P., & Teare, I. D. (1973). Rapid determination of free proline for water stress studies. Plant and Soil, 39, 205–207.

    Article  CAS  Google Scholar 

  • Bayliss, S. L. J., terHorst, C. P., & Lau, J. A. (2017). Testing genotypic variation of an invasive plant species in response to soil disturbance and herbivory. Oecologia, 183, 1135–1141.

    Article  Google Scholar 

  • Blackburn, T. M., Pyšek, P., Bacher, S., Carlton, J. T., Duncan, R. P., Jarošík, V., Wilson, J. R. U., & Richardson, D. M. (2011). A proposed unified framework for biological invasions. Trends in Ecology and Evolution, 26(7), 333–339.

    Article  Google Scholar 

  • Blankenship, R. E. (2002). Molecular mechanisms of photosynthesis. Oxford: Blackwell Science.

    Book  Google Scholar 

  • Bowles, J. E. (1988). Engineering properties of soil and their management, Third edition. McGraw-Hill International Editions, Civil Engineering Series, Singapore: McGraw- Hill Inc.

  • Chapman, M. A., & Burke, J. M. (2006). Radishes gone wild. Heredity, 97, 379–380.

    Article  CAS  Google Scholar 

  • Cooling, M., & Hoffmann, B. D. (2015). Here today, gone tomorrow: declines and local extinctions of invasive ant populations in the absence of intervention. Biological Invasions, 17, 3351–3357.

    Article  Google Scholar 

  • Cooling, M., Hartley, S., Sim, D. A., & Lester, P. J. (2012). The widespread collapse of an invasive species: Argentine ants (Linepithema humile) in New Zealand. Biology Letters, 8, 430–433.

    Article  Google Scholar 

  • Daehler, C. C. (2003). Performance comparisons of co-occurring native and alien invasive plants: implications for conservation and restoration. Annual Review of Ecology, Evolution and Systematics, 34, 183–211.

    Article  Google Scholar 

  • Dale, M. P., & Causton, D. R. (1992). The ecophysiology of Veronica chamaedrys, V. montana and V. officinalis. I. light quality and light quantity. Journal of Ecology, 80, 483–492.

    Article  Google Scholar 

  • Daws, M. I., Pearson, T. R., Burslem, D. F., Mullins, C. E., & Dalling, J. W. (2005). Effects of topographic position, leaf litter and seed size on seedling demography in a semi-deciduous tropical forest in Panama. Plant Ecology, 179(1), 93–105.

    Article  Google Scholar 

  • Drummond, E. B., & Vellend, M. (2012). Genotypic diversity effects on the performance of Taraxacum officinale populations increase with time and environmental favorability. PLoS One, 7, e30314.

    Article  CAS  Google Scholar 

  • Dudley, S. A., & Schmitt, J. (1996). Testing the adaptive plasticity hypothesis: density-dependent selection on manipulated stem length in Impatiens capensis. The American Naturalist, 147, 445–465.

    Article  Google Scholar 

  • Durand, L. Z., & Goldstein, G. (2001). Photosynthesis, photoinhibition, and nitrogen use efficiency in native and invasive tree ferns in Hawaii. Oecologia, 126, 345–354.

    Article  Google Scholar 

  • Eamus, D., & Prichard, H. (1998). A cost-benefit analysis of leaves of four Australian savanna species. Tree Physiology, 18, 537–545.

    Article  Google Scholar 

  • Evans, J. R., & Poorter, H. (2001). Photosynthetic acclimation of plants to growth irradiance: the relative importance of specific leaf area and nitrogen partitioning in maximizing carbon gain. Plant, Cell and Environment, 24, 755–767.

    Article  CAS  Google Scholar 

  • Feng, Y. L., Wang, J. F., & Sang, W. G. (2007). Biomass allocation, morphology and photosynthesis of invasive and non-invasive exotic species grown at four irradiance levels. Acta Oecologia, 31, 40–47.

    Article  Google Scholar 

  • Fitter, A. H., & Hay, R. K. M. (1981). Environmental physiology of plants. London: Academic Press Inc..

    Google Scholar 

  • Flory, S. L., Lorentz, K. A., Gordon, D. R., & Sollenberger, L. E. (2012). Experimental approaches for evaluating the invasion risk of biofuel crops. Environmental Research Letters, 7(4), 045904.

    Article  Google Scholar 

  • Funk, J. L. (2013). The physiology of invasive plants in low-resource environments. Conservation Physiology, 1(1), cot026.

    Article  Google Scholar 

  • Gavier-Pizarro, G. I., Radeloff, V. C., Stewart, S. I., Huebner, C. D., & Keuler, N. S. (2010). Housing is positively associated with invasive exotic plant richness in New England, USA. Ecological Applications, 20(7), 1913–1925.

    Article  Google Scholar 

  • Goyal, N., & Sharma, G. P. (2016). Emerging invaders from the cultivated croplands: an invasion perspective. In V. R. Rajpal, S. Rama Rao, & S. N. Raina (Eds.), Gene Pool Diversity and Crop Improvement (pp. 271–290). Switzerland: Springer International Publishing.

    Chapter  Google Scholar 

  • Goyal, N., Pardha-Saradhi, P., & Sharma, G. P. (2014). Can adaptive modulation of traits to urban environments facilitate Ricinus communis L. invasiveness? Environmental Monitoring and Assessment, 186, 7941–7948.

    Article  CAS  Google Scholar 

  • Grzybowski, M., & Kruk, M. (2015). Variations in the population structure and ecology of Matteuccia struthiopteris. Population Ecology, 57(1), 127–141.

    Article  Google Scholar 

  • Havel, J. E., Lee, C. E., & Vander Zanden, M. J. (2005). Do reservoirs facilitate invasions into landscapes? Bioscience, 55, 518–525.

    Article  Google Scholar 

  • Hayat, S., Hayat, Q., Alyemeni, M. N., Wani, A. S., Pichtel, J., & Ahmad, A. (2012). Role of proline under changing environments. Plant Signaling and Behavior, 7, 1–11.

    Article  CAS  Google Scholar 

  • Hill, J. E. (2016). Collapse of a reproducing population of non-native African jewelfish (Hemichromis letourneuxi) in a Florida lake. NeoBiota, 29, 35–52.

    Article  Google Scholar 

  • Huber, H., & Wiggerman, L. (1997). Shade avoidance in the clonal herb Trifolium fragiferum: a field study with experimentally manipulated vegetation height. Plant Ecology, 130, 53–62.

    Article  Google Scholar 

  • Kowarik, I. (2005). Urban ornamentals escaped from cultivation. In J. Gressel (Ed.), Crop ferality and volunteerism (pp. 97–121). Boca Raton: CRC Press.

    Chapter  Google Scholar 

  • Kueffer, C., Pyšek, P., & Richardson, D. M. (2013). Integrative invasion science: model systems, multi-site studies, focused meta-analysis and invasion syndromes. New Phytologist, 200, 615–633.

    Article  Google Scholar 

  • Lambers, H., & Poorter, H. (1992). Inherent variation in growth rate between higher plants: a search for physiological causes and ecological consequences. Advances in Ecological Research, 23, 188–261.

    Google Scholar 

  • Leishman, M. R., Thomson, V. P., & Cooke, J. (2010). Native and exotic invasive plants have fundamentally similar carbon capture strategies. Journal of Ecology, 98, 28–42.

    Article  CAS  Google Scholar 

  • Lester, P. J., & Gruber, M. A. (2016). Booms, busts and population collapses in invasive ants. Biological Invasions, 18(11), 3091–3101.

    Article  Google Scholar 

  • Martins, V. F., Haddad, C. R. B., & Semir, J. (2011). Responses of the invasive Ricinus communis seedlings to competition and light. New Zealand Journal of Botany, 49, 263–279.

    Article  Google Scholar 

  • Matsumoto, Y., Oikawa, S., Yasumura, Y., Hirose, T., & Hikosaka, K. (2008). Reproductive yield of individuals competing for light in a dense stand of an annual, Xanthium canadense. Oecologia, 157, 185–195.

    Article  Google Scholar 

  • Mattioli, R., Costantino, P., & Trovato, M. (2009). Proline accumulation in plants: not only stress. Plant Signaling and Behavior, 4, 1016–1018.

    Article  CAS  Google Scholar 

  • Matzek, V. (2012). Trait values, not trait plasticity, best explain invasive species’ performance in a changing environment. PLoS One, 7(10), e48821.

    Article  CAS  Google Scholar 

  • Monteith, J. L., & Unsworth, M. H. (1990). Principles of Environmental Physics (2nd ed.). London: Edward Arnold.

    Google Scholar 

  • Nagashima, H., & Hikosaka, K. (2011). Plants in a crowded stand regulate their height growth so as to maintain similar heights to neighbours even when they have potential advantages in height growth. Annals of Botany, mcr109.

  • Negussie, A., Achten, W. M., Aerts, R., Norgrove, L., Sinkala, T., Hermy, M., & Muys, B. (2013). Invasiveness risk of the tropical biofuel crop Jatropha curcas L. into adjacent land use systems: from the rumors to the experimental facts. Global Change Biology Bioenergy, 5(4), 419–430.

    Article  Google Scholar 

  • Nicotra, A. B., Atkin, O. K., Bonser, S. P., Davidson, A. M., Finnegan, E. J., Mathesius, U., Poot, P., Purugganan, M. D., Richards, C. L., Valladares, F., & van Kleunen, M. (2010). Plant phenotypic plasticity in a changing climate. Trends in Plant Science, 15, 684–692.

    Article  CAS  Google Scholar 

  • Novak, S. J., & Mack, R. N. (2005). Genetic bottlenecks in alien plant species: influence of mating systems and introduction dynamics. In D. F. Sax, S. D. Gaines, & J. J. Stachowicz (Eds.), Exotic species—bane to conservation and boon to understanding: ecology, evolution and biogeography (pp. 95–122). USA: Sinauer.

    Google Scholar 

  • O'Hara, K. L. (1988). Stand structure and growing space efficiency following thinning in an even-aged Douglas-fir stand. Canadian Journal of Forest Research, 18(7), 859–866.

    Article  Google Scholar 

  • Paz, H., & Martĺnez-Ramos, M. (2003). Seed mass and seedling performance within eight species of Psychotria (Rubiaceae). Ecology, 84(2), 439–450.

    Article  Google Scholar 

  • Piper, C. S. (1944). Soil and Plant Analysis. New York: Interscience Publications Inc.

  • Poorter, L. (1999). Growth responses of 15 rain-forest tree species to a light gradient: the relative importance of morphological and physiological traits. Functional Ecology, 13, 396–410.

    Article  Google Scholar 

  • Poorter, H., & Nagel, O. (2000). The role of biomass allocation in the growth response of plants to different levels of light, CO2, nutrients and water: a quantitative review. Australian Journal of Plant Physiology, 27, 595–607.

    Article  CAS  Google Scholar 

  • Pouyat, R. V., McDonnell, M. J., & Pickett, S. T. A. (1995). Soil characteristics of oak stands along an urban-rural land-use gradient. Journal of Environmental Quality, 24, 516–526.

    Article  CAS  Google Scholar 

  • Pyšek, P., & Richardson, D. M. (2007). Traits associated with invasiveness in alien plants: where do we stand? In W. Nentwig (Ed.), Biological invasions, ecological studies (Vol. 193, pp. 97–126). Berlin & Heidelberg: Springer.

  • Reich, P. B., Walters, M. B., & Ellsworth, D. S. (1997). From tropics to tundra: global convergence in plant functioning. Proceedings of National Academy of Science USA, 94, 13730–13734.

    Article  CAS  Google Scholar 

  • Sandström, A., Andersson, M., Asp, A., Bohman, P., Edsman, L., Engdahl, F., Nyström, P., Stenberg, M., Hertonsson, P., Vrålstad, T., & Granèli, W. (2014). Population collapses in introduced non-indigenous crayfish. Biological Invasions, 16(9), 1961–1977.

    Article  Google Scholar 

  • Schieving, F., & Poorter, H. (1999). Carbon gain in a multispecies canopy: the role of specific leaf area and photosynthetic nitrogen-use efficiency in the tragedy of the commons. New Phytologist, 143, 201–211.

    Article  Google Scholar 

  • Sexton, J. P., McKay, J. K., & Sala, A. (2002). Plasticity and genetic diversity may allow saltcedar to invade cold climates in North America. Ecological Applications, 12(6), 1652–1660.

    Article  Google Scholar 

  • Sharma, G. P., Esler, K. J., & Blignaut, J. N. (2010). Determining the relationship between invasive alien species density and a country's socio-economic status. South African Journal of Science, 106(3-4), 1–6.

    Google Scholar 

  • Shen, X. Y., Peng, S. L., Chen, B. M., Pang, J. X., Chen, L. Y., Xu, H. M., & Hou, Y. P. (2011). Do higher resource capture ability and utilization efficiency facilitate the successful invasion of native plants? Biological Invasions, 13, 869–881.

    Article  Google Scholar 

  • Simberloff, D., & Gibbons, L. (2004). Now you see them, now you don’t!—population crashes of established introduced species. Biological Invasions, 6, 161–172.

    Article  Google Scholar 

  • Singh, V., Singh, H., Sharma, G. P., & Raghubanshi, A. S. (2011). Eco-physiological performance of two invasive weed congeners (Ageratum conyzoides L. and Ageratum houstonianum Mill.) in the Indo-Gangetic plains of India. Environmental Monitoring and Assessment, 178, 415–422.

    Article  Google Scholar 

  • Smith, H. (1982). Light quality, photoreception and plant strategy. Annual Review of Plant Physiology, 33, 481–518.

    Article  CAS  Google Scholar 

  • Solbrig, O., & Solbrig, D. J. (1984). Size inequalities and fitness in plant populations. Oxford Surveys in Evolutionary Biology, 1, 141–159.

    Google Scholar 

  • Song, L. Y., Ni, G. Y., Chen, B. M., & Peng, S. L. (2007). Energetic cost of leaf construction in the invasive weed Mikania micrantha H.B.K. and its co-occurring species: implications for invasiveness. Botanical Studies, 48, 331–338.

    CAS  Google Scholar 

  • SPSS Inc. 2007. SPSS for Windows, Version 16.0 Release. Chicago, SPSS Inc.

  • Stott, I., Franco, M., Carslake, D., Townley, S., & Hodgson, D. (2010). Boom or bust? A comparative analysis of transient population dynamics in plants. Journal of Ecology, 98(2), 302–311.

    Article  Google Scholar 

  • Szabados, L., & Savoure, A. (2010). Proline: a multifunctional amino acid. Trends in Plant Science, 15, 89–97.

    Article  CAS  Google Scholar 

  • Torimaru, T., Takeda, Y., Matsushita, M., Tamaki, I., Sano, J., & Tomaru, N. (2015). Family-specific responses in survivorship and phenotypic traits to different light environments in a seedling population of Fagus crenata in a cool-temperate forest. Population Ecology, 57(1), 77–91.

    Article  Google Scholar 

  • van Hinsberg, A., & van Tienderen, P. (1997). Variation in growth form in relation to spectral light quality (red/far-red ratio) in Plantago lanceolata L. in sun and shade populations. Oecologia, 111(4), 452–459.

  • van Kleunen, M., Dawson, W., & Dostal, P. (2011). Research on invasive-plant traits tells us a lot. Trends in Ecology and Evolution, 26(7), 317.

  • van Kleunen, M., Dawson, W., & Maurel, N. (2015). Characteristics of successful alien plants. Molecular Ecology, 24, 1954–1968.

  • Weiner, J., & Thomas, S. C. (1986). Size variability and competition in plant monocultures. Oikos, 47, 211–222.

    Article  Google Scholar 

  • Weiner, J., Berntson, G. M., & Thomas, S. C. (1990). Competition and growth form in a woodland annual. Journal of Ecology, 78, 459–469.

    Article  Google Scholar 

  • Weiss, E. A. (2000). Castor. In E. A. Weiss (Ed.), Oilseed crops (pp. 13–51). United Kingdom: Blackwell Science.

    Google Scholar 

  • Williamson, M., & Fitter, A. (1996). The varying success of invaders. Ecology, 77, 1661–1666.

    Article  Google Scholar 

  • Wright, I. J., Reich, P. B., Westoby, M., Ackerly, D. D., Baruch, Z., Bongers, F., Cavender-Bares, J., Chapin, T., Cornelissen, J. H., Diemer, M., et al. (2004). The worldwide leaf economics spectrum. Nature, 428, 821–827.

    Article  CAS  Google Scholar 

  • Wright, I. J., Reich, P. B., Cornelissen, J. H., Falster, D. S., Garnier, E., Hikosaka, K., Lamont, B. B., Lee, W., Oleksyn, J., Osada, N., & Poorter, H. (2005). Assessing the generality of global leaf trait relationships. New Phytologist, 166(2), 485–496.

    Article  Google Scholar 

  • Zenni, R. D., Bailey, J. K., & Simberloff, D. (2014). Rapid evolution and range expansion of an invasive plant are driven by provenance–environment interactions. Ecology letters, 17, 727–735.

    Article  Google Scholar 

  • Zheng, Y. L., Feng, Y. L., Lei, Y. B., & Liao, Z. Y. (2012). Comparisons of plastic responses to irradiance and physiological traits by invasive Eupatorium adenophorum and its native congeners. Journal of Plant Physiology, 169, 884–891.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We are grateful to the anonymous reviewers for their valuable suggestions and comments on previous versions of the manuscript. NG acknowledges Senior Research Fellowship (SRF) support from University Grants Commission, India. NG also acknowledges financial support from DBT and CICS, India for presenting a part of this research at the 7th International Weed Science Congress, 2016 held at Prague, Czech Republic. GPS acknowledges funding support from University of Delhi and Science and Engineering Research Board, Department of Science and Technology, India. We are grateful to Prof. K.S. Rao, Department of Botany, University of Delhi, India for CHN elemental analyzer facility support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gyan Prakash Sharma.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Goyal, N., Shah, K. & Sharma, G.P. Does intrinsic light heterogeneity in Ricinus communis L. monospecific thickets drive species’ population dynamics?. Environ Monit Assess 190, 410 (2018). https://doi.org/10.1007/s10661-018-6791-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10661-018-6791-3

Keywords

Navigation