Skip to main content

Advertisement

Log in

A necessary distinction between spatial representativeness of an air quality monitoring station and the delimitation of exceedance areas

  • Published:
Environmental Monitoring and Assessment Aims and scope Submit manuscript

Abstract

The European legislation on ambient air quality introduces the concepts of spatial representativeness of a monitoring station and spatial extent of an exceedance zone. Spatial representativeness is an essential macro-scale siting criterion which should be evaluated before the setting-up and during the life of a monitoring point. As for the exceedance area, it has to be defined each time an environmental objective is exceeded in an assessment zone. No specific approach is prescribed to delimit such areas. A probabilistic methodology is presented, based on a preliminary kriging estimation of atmospheric concentrations at each point of the domain. It is applied to NO2 pollution on the urban scale. In the proposed approach, a point belongs to the area of representativeness of a station if its concentration differs from the station measurement by less than a given threshold. To take the estimation uncertainty into account, the standard deviation of the kriging error is used in a probabilistic framework. The choice of the criteria used to deal with overlapping areas is first tested on NO2 annual mean concentration maps of France, built by combining surface monitoring observations and outputs from the CHIMERE chemistry transport model. At the local scale, data from passive sampling surveys and high -resolution auxiliary variables are used to provide a more precise estimation of the background pollution in different French cities. The traffic-related pollution can also be accounted for in the map by additional predictors such as distance to the road, and traffic-related NOx emissions. Similarly, the proposed approach is implemented to identify the points, at a given statistical risk, where the NO2 concentration is above the annual limit value.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

References

  • ASPA. (2014). Evaluation de la qualité de l’air sur l’agglomération mulhousienne. Technical report, ASPA. http://www.atmo-alsace.net/medias/produits/Evaluation_de_la_qualit5.pdf.

  • Baldwin, N., Gilani, O., Raja, S., Batterman, S., Ganguly, R., Hopke, P., Berrocal, V., Robins, T., Hoogterp, S. (2015). Factors affecting pollutant concentrations in the near-road environment. Atmospheric Environment.

  • Beauchamp, M. (2016). Interpolation des sorties de modèles urbains par krigeage avec dérive polynomiale. Technical Report DRC-11-118225-13905A, LCSQA. URL www.lcsqa.org.

  • Bobbia, M., Cori, A., de Fouquet, C. (2008). Représentativité spatiale d’une station de mesure de la pollution atmosphérique. Pollution Atmosphé,rique, vol n.197.

  • Carruthers, D.J., M., h.E.C., Singles, R. (1998). Development of ADMS-Urban and comparison with data for urban areas in the UK. Proc. of Air Pollution Modelling and its Application xii. Technical report, CERC.

  • Chiles, J.P., & Delfiner, P. (2012). Geostatistics: modeling spatial uncertainty, second edition. New-York: Wiley.

    Book  Google Scholar 

  • Cori, A. (2005a). 1. utilisation de données environnementales pour la cartographie du NO2 sur la région rouennaise. Master’s thesis, Ecole Nationale Supérieure des Mines de Paris. Première partie.

  • Cori, A. (2005b). 2. représentativité spatiale des stations de mesure de la concentration moyenne annuelle en NO2. Master’s thesis, Ecole Nationale Supérieure des Mines de Paris. Deuxième partie.

  • Cori, A. (2005c). 3. définition de zones homogènes vis-à-vis du dépassement de seuil pour la concentration en ozone. Master’s thesis, Ecole Nationale Supérieure des Mines de Paris. Troisième partie.

  • De Fouquet, C., Gallois, D., Perron, G. (2007). Geostatistical characterization of the nitrogen dioxide concentration in an urban area: part 1: spatial variability and cartography of the annual concentration. Atmospheric Environment, 41(32), 6701–6714.

    Article  CAS  Google Scholar 

  • De Fouquet, C., Beauchamp, M., Malherbe, L. (2011). Remarques sur la représentativité des stations de mesure de qualité de l’air. Technical Report r2011-334CFOU Centre de géosciences, Géostatistique, Ecole des Mines de Paris. Rapport réalisé pour le LCSQA.

  • Decision 2011/850/EU. (2011). Commission implementing decision of 12 December 2011 laying down rules for Directives 2004/107/EC and 2008/50/EC of the European Parliament and of the Council as regards the reciprocal exchange of information and reporting on ambient air quality.

  • Directive 2004/107/EC. (2004). Directive 2004/107/EC of the European Parliament and of the Council of 15 December 2004 relating to arsenic, cadmium, mercury nickel and polycyclic aromatic hydrocarbons in ambient air.

  • Directive 2008/50/EC. (2008). Directive 2008/50/EC of the European Parliament and of the Council of 21 May 2008 on ambient air quality and cleaner air for Europe.

  • Gilbert, N.L., Woodhouse, S., Stieb, D.M., Brook, J.R. (2003). Ambient nitrogen dioxide and distance from a major highway. Science of The Total Environment, 312(1-3), 43–46. ISSN 0048-9697. https://doi.org/10.1016/S0048-9697(03)00228-6. http://www.sciencedirect.com/science/article/pii/S0048969703002286.

    Article  CAS  Google Scholar 

  • Henne, S., Brunner, D., Folini, D., Solberg, S., Klausen, J., Buchmann, B. (2010). Assessment of parameters describing representativeness of air quality in-situ measurement sites. Atmospheric Chemistry and Physics, 10(8), 3561–3581. https://doi.org/10.5194/acp-10-3561-2010. http://www.atmos-chem-phys.net/10/3561/2010/.

    Article  CAS  Google Scholar 

  • Janssen, S., Dumont, G., Fierens, F., Deutsch, F., Maiheu, B., Celis, D., Trimpeneers, E., Mensink, C. (2012). Land use to characterize spatial representativeness of air quality monitoring stations and its relevance for model validation. Atmospheric Environment, 59, 492–500. ISSN 1352-2310. https://doi.org/10.1016/j.atmosenv.2012.05.028. http://www.sciencedirect.com/science/article/pii/S1352231012004773.

    Article  CAS  Google Scholar 

  • Journel, A.G., & Huijbregts, C.J. (1978). Mining geostatistics. London: Academic Press.

    Google Scholar 

  • Lajaunie, C. (1993). L’estimation géostatistique non linéaire. University Lecture.

  • Leelőssy, Á., Molnár, F., Izsák, F., Havasi, Á., Lagzi, I., Mészáros, R. (2014). Dispersion modeling of air pollutants in the atmosphere: a review. Central European. Journal of Geosciences, 6(3), 257–278. ISSN 1896-1517. https://doi.org/10.2478/s13533-012-0188-6.

    Google Scholar 

  • Malherbe, L., & Wroblewski, A. (2006). Synthèse des techniques de cartographie du dioxyde d’azote. Technical Report DRC-07-74777-03941a, LCSQA. www.lcsqa.org. Valorisation des travaux, 2003–2005.

  • Malherbe, L., Cárdenas, G., Colin, P., Yahyaoui, A. (2008). Using different spatial scale measurements in a geostatistically based approach for mapping atmospheric nitrogen dioxide concentrations. Application to the French Centre region. Environmetrics, 19(7), 751–764.

    Article  CAS  Google Scholar 

  • Martìn, F., Fileni, L., Palomino, I., Garcia Vivanco, M., Garrido, J. (2014). Analysis of the spatial representativeness of rural background monitoring stations in spain. Atmospheric Pollution Research, 5(4), 779–788. ISSN 1309-1042. https://doi.org/10.5094/APR.2014.087. http://www.sciencedirect.com/science/article/pii/S1309104215302865.

    Article  Google Scholar 

  • Martìn, F., Santiago, J.L., Kracht, O., García, L., Gerboles, M. (2015). FAIRMODE Spatial representativeness feasibility study. Technical Report JRC96827, JRC. http://publications.jrc.ec.europa.eu/repository/handle/JRC96827.

  • Matheron, G. (1974). Effet proportionnel et lognormalité ou le retour du serpent de mer Technical Report Rapport N-374. Ecole des Mines de Paris: Centre de Géostatistique.

    Google Scholar 

  • Menut, L., Bessagnet, B., Khvorostyanov, D., Beekmann, M., Blond, N., Colette, A., Coll, I., Curci, G., Foret, G., Hodzic, A., Mailler, S., Meleux, F., Monge, J.L., Pison, I., Siour, G., Turquety, S., Valari, M., Vautard, R., Vivanco, M.G. (2013). CHIMERE 2013: A model for regional atmospheric composition modelling. Geoscientific Model Development, 6, 981–1028.

    Article  CAS  Google Scholar 

  • Pebesma, E.J. (2004). Multivariable geostatistics in S: the gstat package.

  • Righini, G., Cappelletti, A., Ciucci, A., Cremona, G., Piersanti, A., Vitali, L., Ciancarella, L. (2014). {GIS} based assessment of the spatial representativeness of air quality monitoring stations using pollutant emissions data. Atmospheric Environment, 97, 121–129. ISSN 1352-2310. https://doi.org/10.1016/j.atmosenv.2014.08.015. http://www.sciencedirect.com/science/article/pii/S1352231014006098.

    Article  CAS  Google Scholar 

  • Rivoirard, J. (1991). Introduction au krigeage disjonctif et à la Géostatistique non linéaire. University Lecture.

  • Rivoirard, J. (2003). Cours de Géostatistique multivariable. C-172. University Lecture. Ecole des Mines de Paris. Centre de Géosciences.

  • Roorde-Knape, M.C., Janssen, N.A.H., de Hartog, J., Van Vliet, P.H.N., Harssema, H., Brunekreef, B. (1999). Traffic related air pollution in city districts near motorways. Science of The Total Environment, 235(1-3), 339–341. ISSN 0048-9697. https://doi.org/10.1016/S0048-9697(99)00217-X. http://www.sciencedirect.com/science/article/pii/S004896979900217X.

    Article  Google Scholar 

  • Santiago, J.-L., Martìn, F., Martilli, A. (2013). A computational fluid dynamic modelling approach to assess the representativeness of urban monitoring stations. Science of The Total Environment, 454-455, 61–72. ISSN 0048-9697. https://doi.org/10.1016/j.scitotenv.2013.02.068. http://www.sciencedirect.com/science/article/pii/S0048969713002532.

    Article  CAS  Google Scholar 

  • Spangl, W., Schneider, J., Moosmann, L., Nagl, C. (2007). Representativeness and classification of air quality monitoring stations final report. Technical report, Umweltbundesamt Wien.

  • Tilloy, A., Mallet, V., Poulet, D., Pesin, C., Brocheton, F. (2013). Blue-based NO2 data assimilation at urban scale. Journal of Geophysical Research-Atmospheres, 118(n4), 2013–2040.

    Article  CAS  Google Scholar 

  • Vìtali, L., Ciancarella, L., Cionni, I., Cremona, G., Piersanti, A., Righini, G. (2013). Rappresentativitá spaziale di misure di qualitá dell’aria. Valutazione di un metodo di stima basato sull’analisi dei campi di concentrazione simulati dal modello nazionale MINNI. Technical Report RT/2013/3/ENEA, ENEA Technical Report.

  • Zou, X., Shen, Z., Yuan, T., Yin, S., Cai, J., Chen, L., Wang, W. (2006). Shifted power-law relationship between NO2 concentration and the distance from a highway: A new dispersion model based on the wind profile model. Atmospheric Environment, 40(40), 8068–8073. ISSN 1352-2310. https://doi.org/10.1016/j.atmosenv.2006.09.012. http://www.sciencedirect.com/science/article/pii/S1352231006009496.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors are thankful to Air Languedoc-Roussillon and Atmo Champagne-Ardenne for providing the data.

Funding

This study was funded by the French Ministry in charge of the environment.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maxime Beauchamp.

Appendices

Appendix 1: Relaxation of the Gaussian assumption on background estimation error: the unimodal distribution

In Chiles and Delfiner (2012), some general results are given for a variable A following a continuous and unimodal distribution:

$$ \forall \ \alpha \ \mathrm{P}\left( \left|A-\alpha \right|\ge t\, \sqrt{E\left( \left( A-\alpha \right)^{2} \right)} \right) \left\{\begin{array}{l} \le {\frac{4}{9t^{2}}}\ \text{if} \ t\ge \sqrt{\frac{8}{3}} \\ \le \frac{4}{3t^{2}}-\frac{1}{3}\ \text{if} \ t\le \sqrt{\frac{8}{3}} \end{array}\right. $$
(25)

Thus, for a centered variable Y, and with α = 0, Eq. 25 becomes:

$$\begin{array}{@{}rcl@{}} \forall \ \alpha \ \mathrm{P}\left( \left|Y \right|\ge t\sigma \right) \left\{\begin{array}{l} \le {\frac{4}{9t^{2}}}\ \text{if} \ t\ge \sqrt{\frac{8}{3}} \\ \le \frac{4}{3t^{2}}-\frac{1}{3}\ \text{if} \ t\le \sqrt{\frac{8}{3}} \end{array}\right. \end{array} $$
(26)

For \(t > \sqrt [{}]{{\frac {8}{3}} } \) ≈ 1.63, this upper boundary is lower than Bienaymé-Tchebychev (\({\frac {4}{9}} <1\)) ∀t > 1. For t = 1, the two upper boundaries are equal. Last, for t < 1, the upper boundary is again greater than 1 (and even larger than Bienaymé-Tchebychev). The results under this unimodal assumption gives (Fig.13).

Fig. 13
figure 13

Unimodal and Gaussian assumption on the error of kriging-based estimations and their related background representativeness areas in Montpellier (2007) and Troyes (2009). a Montpellier (unimodal error). b Montpellier (Gaussian error). c Troyes (unimodal error). d Troyes (Gaussian error)

Let find t so that:

$$\begin{array}{@{}rcl@{}} \mathrm{P}\left( \frac{\left|Y\right|}{\sigma} >t\right) \le \eta \end{array} $$
(27)
  1. 1.

    if \(t\ge \sqrt [{}]{{\frac {8}{3}} } \), a sufficient condition is \({\frac {4}{9t^{2} }} \le \eta \), i.e., \(t\ge {\frac {2}{3\sqrt [{}]{\eta } }} \).

    1. (a)

      if \(\sqrt [{}]{{\frac {8}{3}} } \ge {\frac {2}{3\sqrt [{}]{\eta } }} \), i.e if \(\eta \ge \frac {1}{6}\), the sufficient condition is also satisfied ;

    2. (b)

      if \(\sqrt [{}]{{\frac {8}{3}} } \le {\frac {2}{3\sqrt [{}]{\eta } }} \), i.e., if \(\eta \le \frac {1}{6}\), the sufficient condition is \(t\ge {\frac {2}{3\sqrt [{}]{\eta } }} \).

  2. 2.

    let \(t\le \sqrt [{}]{{\frac {8}{3}} } \) ; the sufficient condition is \({\frac {4}{3t^{2}}} \, -{\frac {1}{3}} \, \le \eta \) is \({\frac {2}{\sqrt {1 + 3\eta } }} \le t\). This condition is satisfied if and only if \({\frac {2}{\sqrt {1 + 3\eta } }} \le \sqrt {{\frac {8}{3}} } \), i.e., if \(\eta \ge {\frac {1}{6}} \).

Last,

  1. 1.

    if \(t\ge \sqrt [{}]{{\frac {8}{3}} } \) and \(\eta \ge \frac {1}{6}\), the sufficient condition is checked ;

  2. 2.

    if \(t\ge \sqrt [{}]{{\frac {8}{3}} } \) and \(\eta \le \frac {1}{6}\), the sufficient condition is \(t\ge {\frac {2}{3\sqrt [{}]{\eta } }} \) ;

  3. 3.

    if \(t\le \sqrt [{}]{{\frac {8}{3}} } \) and \(\eta \ge {\frac {1}{6}}\), the sufficient condition is \(t\ge {\frac {2}{\sqrt {1 + 3\eta } }} \) ;

  4. 4.

    the case \(t\le \sqrt [{}]{{\frac {8}{3}} } \) and \(\eta \le \frac {1}{6}\), corresponding to the lower boundary for t, is impossible.

Table 4 sums up the different situations.

Table 4 Statistical risk η and boundary for t

To sum up:

if \(\eta \le \frac {1}{6},\ t\ge {\frac {2}{3\sqrt [{}]{\eta } }}\) and if \(\ \eta \ge \frac {1}{6},\ t\ge {\frac {2}{\sqrt [{}]{1 + 3\eta } }}\). When \(\eta =\frac {1}{6}\), the upper boundaries for t are the same.

If kriging with external drift is involved, the previous results become:

if \(\ \eta \le \frac {1}{6},\ |{\Delta }_{\mathbf {x}-\mathbf {x}_{0}}^{\text {K}}| \le \delta -\frac {2\sigma _{\text {K}}(\mathbf {x})}{3\sqrt {\eta }}\) and if \(\ \eta \ge \frac {1}{6},\ |{\Delta }_{\mathbf {x}-\mathbf {x}_{0}}^{\text {K}}| \le \delta -\frac {2\sigma _{\text {K}}(\mathbf {x})}{3\sqrt {\eta }}\)

Appendix 2: Proportional effect

It is possible to correct the kriging standard deviation by considering the so-called proportional effect which is identified on the scatterplot between NO2 local mean in a 500-m moving window and its related NO2 local standard deviations (Fig. 14). Let γV be the local variogram in the neighborhood V. It can be obtained from the global variogram γ (i.e., the variogram calculated with all the sampling points) by introducing a multiplicative factor that enables some non-stationarity in the model. This factor is a function of the local mean mV (Matheron 1974; Journel and Huijbregts 1978; Chiles and Delfiner 2012):

Fig. 14
figure 14

Scatterplot between NO2 local mean (μg m− 3) and local standard deviations (μg m− 3) computed within a 500-m moving window

$$\begin{array}{@{}rcl@{}} \gamma_{V}(h)=f(m_{V})\gamma(h) \end{array} $$

The function f is fitted by a curve f(mV) = αmV or \(f(m_{V})=\alpha {m_{V}^{2}}\) (more generally \(f(m_{V})=\alpha {m_{V}^{k}}\)). Only the variogram sill is changed; thus, the kriging weights remain unchanged and the kriging standard deviations are corrected by the ratio f(mV)/f(mg) where mg is the global mean.

This correction has a significant influence on the results (see Figs. 15 and 16): the kriging standard deviations are increased in the areas where high NO2 levels are estimated and reduced for lower concentrations.

Fig. 15
figure 15

Standard deviations, representativeness areas for background stations and probabilities of exceeding the threshold of 32 μg.m− 3 in Montpellier without accounting for proportional effect

Fig. 16
figure 16

Standard deviations, representativeness areas for background stations and probabilities of exceeding the threshold of 32 μg.m− 3 in Montpellier when accounting for proportional effect

The representativeness area of the suburban station is now larger and covers the whole north and west part of the study field \(\mathcal {D}\), which was left blank without the proportional effect (Fig. 5a). The representativeness area of the urban station is reduced downtown and also appears more broken up in the suburbs. The probabilities of exceeding the threshold of 32 μg m− 3 in background configuration are also heavily modified: at a false detection risk β set to 34%, a small exceedance area is identified downtown while the status of the whole downtown was in the uncertainty area without accounting for the proportional effect.

The relevance of the proportional effect is however questionable because the quality of the fitting made for f is suspicious. But even if the representativeness and exceedance areas are not the same with and without the use of this effect, they are not totally inconsistent. The key point is to keep the same approach when the computation of these areas is updated over the years.

Appendix 3: Conditional expectation

In the main results provided by the “Results” section, kriging with NOx emissions used as external drift is involved to map the NO2 annual mean. On such urban areas, that are quite small, so that the local estimation of the drift becomes useless, a residual kriging in which the regression between NO2 concentrations and NOx emissions is first estimated is also appropriate. Its main advantage would be to ease the use of a non-linear geostatistical framework, more adapted to deal with the problem of identifying exceedances.

The model for the process Z(x) is still:

$$ Z(\mathbf{x})= \mu(\mathbf{x})+R(\mathbf{x}) $$
(28)

with μ(x) the regression of NO2 on NOx emissions and R(x) a second-order stationary residual, having no correlation with μ(x).

From now on, in the identification of the exceedances problem, the residuals \(\hat {R}(\mathbf {x}_{\alpha })\) are transformed by the anamorphosis ϕ1(.) to the new standard variable Q(x) (see, e.g., Rivoirard 1991):

$$ Q(\mathbf{x})= \phi_{1}\left[\hat{R}(\mathbf{x})\right] $$
(29)

Thus, the definition for exceeding the threshold s becomes:

$$ Z(\mathbf{x})>s \Rightarrow Q(\mathbf{x})>\phi_{1}\left( s-\mu(\mathbf{x})\right) $$
(30)

And for the representativeness, it is:

$$\begin{array}{@{}rcl@{}} |Z(\mathbf{x})\,-\,Z(\mathbf{x}_{0})|\!<\! \delta \!&\Longleftrightarrow&\! |\mu(\mathbf{x})+R(\mathbf{x})\\ &&\!-Z(\mathbf{x}_{0})| \!<\! \delta \end{array} $$
(31)
$$\begin{array}{@{}rcl@{}} &\Rightarrow & |R(\mathbf{x})|<\delta\,-\,|\mu(\mathbf{x})\,-\,Z(\mathbf{x}_{0})| \\ & \Longleftrightarrow & Q(\mathbf{x})<\phi_{2} \\ &&\times\left( \delta-|\mu(\mathbf{x})-Z(\mathbf{x}_{0})| \right) \end{array} $$
(32)

with Q(x) = ϕ2(|R(x)|) denotes in this problem the anamorphosis of \(|\hat {R}(\mathbf {x})|\).

How to estimate \(\mathbf {1}_{Q(\mathbf {x})>\phi _{1}\left (s-\mu (\mathbf {x})\right )}\) and \(\mathbf {1}_{Q(\mathbf {x})<\phi _{2} \left (\delta -|\mu (\mathbf {x})-Z(\mathbf {x}_{0})| \right )}\)?

Conditional expectation (see e.g. Lajaunie, 1993) provides an estimation of the probability of exceeding a threshold s that is more consistent than simply introducing a conventional Gaussian assumption on the kriging error. In the specific case of a multi-Gaussian random function Q(x), i.e., the multivariate distribution of \(\left (Q(\mathbf {x}),Q(\mathbf {x}_{\alpha })\right )\) is multi-Gaussian (meaning that any linear combination of these variables is Gaussian), the following decomposition is used:

$$ Q(\mathbf{x})=Q^{\text{KS}}(\mathbf{x})+\sigma_{\text{KS}}U(\mathbf{x}) $$
(33)

with U the standard residual of the simple kriging QKS(x) with zero mean and kriging variance \(\sigma _{\text {KS}}^{2}\). Q(x) is seen as the sum of a data-conditioned member Q(xα) and a second term, independent from the available data. The distribution of Q(x), conditionally to the data, thus follows a Gaussian distribution with mean QKS and variance equals to σKS.

Then, the probability of exceeding s is:

$$\begin{array}{@{}rcl@{}} \mathrm{E}\left[ \mathbf{1}_{Q(\mathbf{x}) \geq s} | Q(\mathbf{x}_{\alpha}) \right]\!&=&\!{\int}_{-\infty}^{+\infty} \mathbf{1}_{Q^{\text{KS}}(\mathbf{x})+\sigma_{\text{KS}}(\mathbf{x})u \geq s}g(u)du \\ \!&=&\!{\int}^{+\infty}_{\frac{s-Q^{\text{KS}}}{\sigma_{\text{KS}}}}g(u)du\\ \!&=&\!1-G\left( \frac{s-Q^{\text{KS}}(\mathbf{x})}{\sigma_{\text{KS}}(\mathbf{x})} \right) \end{array} $$
(34)

with g(.) the probability density function and G(.) the cumulative density function of the standard Gaussian distribution.

By using the Hermite polynomials decomposition (see again Rivoirard 1991), of the indicator function 1Q(x)≥s, the conditional expectation is computed as:

$$\begin{array}{@{}rcl@{}} \mathrm{E}\left[ \mathbf{1}_{Q(\mathbf{x}) \geq s} | Q(\mathbf{x}_{\alpha}) \right]\!&=&\!\mathrm{E}\left[ 1\,-\,G(s)\,-\,{\sum}_{i \geq 1}\frac{1}{\sqrt{i}}H_{i-1}\right.\\ &&\quad\!\left.\times(s)g(s)H_{i}\left[ Q(\mathbf{x})\right] | Q(\mathbf{x}_{\alpha}) \vphantom{{\sum}_{i \geq 1}\frac{1}{\sqrt{i}}H_{i-1}}\right] \\ \!&=&\!1-G\,+\,{\sum}_{i \geq 1}H_{i-1}(s)g(s)r^{i}\\ &&\!\times H_{i}\left( \frac{Q^{\text{KS}}(\mathbf{x})}{r}\right) \end{array} $$
(35)

with Hi the i th Hermite polynomial and r the variance of QKS(x) that is easily obtained from the kriging variance:

$$\begin{array}{@{}rcl@{}} \sigma_{\text{KS}}^{2}&=&\text{Var}\left[Q(\mathbf{x})\right]-{\sum}_{\alpha} \lambda_{\alpha} C_{Q}(Q(\mathbf{x}_{\alpha}),Q(\mathbf{x}))\\ &=&\text{Var}\left[Q(\mathbf{x})\right]-r^{2} \end{array} $$
(36)

with CQ(.,.) the covariance function of the random function Q(x).

For the background concentration (thus replacing Z(x) by Y (x) in the previous calculations) in the urban area of Montpellier (2007), the representativeness areas and probabilities of exceedance obtained by conditional expectation are as follows (Fig. 17):

Fig. 17
figure 17

Representativeness areas for background stations and probabilities of exceeding the threshold of 32 μg m− 3 in Montpellier (2007) obtained by conditional expectation

Let us note that a simple kriging is used because after anamorphosis of Z(x), Q(x) is a standard Gaussian variable. However, the stationary assumption is required contrary to the ordinary kriging in which only the intrinsic hypothesis is required. As a consequence, the simple kriging system cannot be written with variograms.

The estimations made by conditional expectation show some similarities with the map accounting for the proportional effect under a conventional Gaussian assumption. Indeed, when only considering the conventional Gaussian assumption with no proportional effect, the kriging variance is not conditioned to the observations while the anamorphosis explicitly take them into account, meaning that in low polluted areas, the variance of the error is lower than in high polluted areas. This variance is:

$$\begin{array}{@{}rcl@{}} \text{Var}\left[ \mathbf{1}_{Q(\mathbf{x}) \geq s} | Q(\mathbf{x}_{\alpha}) \right]&=&\mathrm{E}\left[(\mathbf{1}_{Q(\mathbf{x}) \geq s})^{2} | Q(\mathbf{x}_{\alpha}) \right]\\ &&-\mathrm{E}\left[\mathbf{1}_{Q(\mathbf{x}) \geq s}) | Q(\mathbf{x}_{\alpha}) \right]^{2} \\ &=& \left[1-G\left( \frac{s-Q^{\text{KS}}(\mathbf{x})}{\sigma_{\text{KS}}(\mathbf{x})} \right) \right] \\ && \times G\left( \frac{s-Q^{\text{KS}}(\mathbf{x})}{\sigma_{\text{KS}}(\mathbf{x})}\right) \end{array} $$
(37)

It is also what a proportional effect approach does.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Beauchamp, M., Malherbe, L., de Fouquet, C. et al. A necessary distinction between spatial representativeness of an air quality monitoring station and the delimitation of exceedance areas. Environ Monit Assess 190, 441 (2018). https://doi.org/10.1007/s10661-018-6788-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10661-018-6788-y

Keywords

Navigation