Skip to main content
Log in

Spatial analysis of groundwater suitability for drinking and irrigation in Lahore, Pakistan

  • Published:
Environmental Monitoring and Assessment Aims and scope Submit manuscript

Abstract

This study used a total of 474 groundwater samples analyzed from 2014 data to evaluate the distribution of groundwater quality in the Water and Sanitation Agency (WASA) jurisdiction of Lahore city, Pakistan. The study further assessed the variations in suitability of groundwater for drinking (emphasis on arsenic and fluoride) and irrigation using spatial correlation technique in GIS. The hydrochemical analysis revealed a predominance of Mg-Ca-HCO3-SO4 and Ca-Mg-HCO3-SO4 type. Distribution analysis indicated relatively higher salinity (TDSmax = 1667 mg/L), total hardness (THmax = 558 mg/L), and alkalinity (HCO3max = 584 mg/L) in the south-eastern region of the city, while the central part displayed the highest levels of SO4 and NO3. Also, the eastern region (north-south) of Lahore had significantly elevated As concentrations (up to 86 μg/L). The order of exceedance in terms of arsenic was Gunj Bakhsh town (17.4%), Nishter town (16.4%), Iqbal town (9.8%), Aziz Batti and Shalimar town (8.1%), and Ravi town (3%). The groundwater was classified as average saline to highly saline, except few samples in Aziz Batti/Shalimar town that were in non-saline group. Otherwise, the various indices classified the groundwater for irrigation as generally acceptable. With the various irrigation quality indices displaying discernible variations for the entire study area, it was observed from the distribution maps that the groundwater suitability for irrigation is relatively excellent in the areas away from industries and landfill locations. Also, the chloride analysis shows 98.7% of the groundwater samples belong to the very fresh and fresh water class. Thus, continued monitoring and studying the changes in groundwater quality in Lahore is imperative.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Abbas, Z., Su, C., Tahira, F., Mapoma, H. W. T., & Aziz, S. Z. (2015). Quality and hydrochemistry of groundwater used for drinking in Lahore, Pakistan: analysis of source and distributed groundwater. Environmental Earth Sciences, 74(5), 4281–4294. https://doi.org/10.1007/s12665-015-4432-5.

    Article  CAS  Google Scholar 

  • Abou Zakhem, B., & Hafez, R. (2015). Hydrochemical, isotopic and statistical characteristics of groundwater nitrate pollution in Damascus Oasis (Syria). Environmental Earth Sciences, 74(4), 2781–2797. https://doi.org/10.1007/s12665-015-4258-1.

    Article  CAS  Google Scholar 

  • Ahamed, S., Kumar Sengupta, M., Mukherjee, A., Amir Hossain, M., Das, B., Nayak, B., Pal, A., Chandra Mukherjee, S., Pati, S., Nath Dutta, R., Chatterjee, G., Mukherjee, A., Srivastava, R., & Chakraborti, D. (2006). Arsenic groundwater contamination and its health effects in the state of Uttar Pradesh (UP) in upper and middle Ganga plain, India: a severe danger. Sci Total Environ, 370(2–3), 310–322. https://doi.org/10.1016/j.scitotenv.2006.06.015.

    Article  CAS  Google Scholar 

  • Ahmad, M., Rafiq, M., Akram, W., Tasneem, M., Ahmad, N., Iqbal, N., & Sajjad, M. I. (2002). Assessment of aquifer system in the city of Lahore, Pakistan using isotopic techniques. Major Urban Areas, 33, 109–133.

  • Ahmed, K. M., Bhattacharya, P., Hasan, M. A., Akhter, S. H., Alam, S. M. M., Bhuyian, M. A. H., Imam, M. B., Khan, A. A., & Sracek, O. (2004). Arsenic enrichment in groundwater of the alluvial aquifers in Bangladesh: an overview. Applied Geochemistry, 19(2), 181–200. https://doi.org/10.1016/j.apgeochem.2003.09.006.

    Article  CAS  Google Scholar 

  • Aiman, U., Mahmood, A., Waheed, S., & Malik, R. N. (2016). Enrichment, geo-accumulation and risk surveillance of toxic metals for different environmental compartments from Mehmood Booti dumping site, Lahore city, Pakistan. Chemosphere, 144, 2229–2237. https://doi.org/10.1016/j.chemosphere.2015.10.077.

    Article  CAS  Google Scholar 

  • Baillieux, A., Moeck, C., Perrochet, P., & Hunkeler, D. (2015). Assessing groundwater quality trends in pumping wells using spatially varying transfer functions. Hydrogeology Journal, 23(7), 1449–1463. https://doi.org/10.1007/s10040-015-1279-5.

    Article  CAS  Google Scholar 

  • Bibi, M., Hashmi, M. Z., & Malik, R. N. (2015). Human exposure to arsenic in groundwater from Lahore district, Pakistan. Environmental Toxicology and Pharmacology, 39(1), 42–52. https://doi.org/10.1016/j.etap.2014.10.020.

    Article  CAS  Google Scholar 

  • Bohling, G. (2005). Introduction to geostatistics and variogram analysis. Kansas geological survey, 1, 1–20.

    Google Scholar 

  • Bonton, A., Rouleau, A., Bouchard, C., & Rodriguez, M. J. (2010). Assessment of groundwater quality and its variations in the capture zone of a pumping well in an agricultural area. Agricultural Water Management, 97(6), 824–834. https://doi.org/10.1016/j.agwat.2010.01.009.

    Article  Google Scholar 

  • Bordoloi, S., Nath, S. K., Gogoi, S., & Dutta, R. K. (2013). Arsenic and iron removal from groundwater by oxidation-coagulation at optimized pH: laboratory and field studies. Journal of Hazardous Materials, 260, 618–626. https://doi.org/10.1016/j.jhazmat.2013.06.017.

    Article  CAS  Google Scholar 

  • Buragohain, M., Bhuyan, B., & Sarma, H. P. (2010). Seasonal variations of lead, arsenic, cadmium and aluminium contamination of groundwater in Dhemaji district, Assam, India. [journal article]. Environmental Monitoring and Assessment, 170(1), 345–351. https://doi.org/10.1007/s10661-009-1237-6.

    Article  CAS  Google Scholar 

  • Chakraborti, D., Rahman, M. M., Das, B., Murrill, M., Dey, S., Chandra Mukherjee, S., Dhar, R. K., Biswas, B. K., Chowdhury, U. K., Roy, S., Sorif, S., Selim, M., Rahman, M., & Quamruzzaman, Q. (2010). Status of groundwater arsenic contamination in Bangladesh: a 14-year study report. Water Research, 44(19), 5789–5802. https://doi.org/10.1016/j.watres.2010.06.051.

    Article  CAS  Google Scholar 

  • Farooqi, A., Masuda, H., & Firdous, N. (2007). Toxic fluoride and arsenic contaminated groundwater in the Lahore and Kasur districts, Punjab, Pakistan and possible contaminant sources. Environmental Pollution, 145(3), 839–849. https://doi.org/10.1016/j.envpol.2006.05.007.

    Article  CAS  Google Scholar 

  • Gabriel, H., & Khan, S. (2010). Climate responsive urban groundwater management options in a stressed aquifer system. IAHS-AISH Publication, 338, 166–168.

  • Ghesquière, O., Walter, J., Chesnaux, R., & Rouleau, A. (2015). Scenarios of groundwater chemical evolution in a region of the Canadian Shield based on multivariate statistical analysis. Journal of Hydrology: Regional Studies, 4, 246–266. https://doi.org/10.1016/j.ejrh.2015.06.004.

    Article  Google Scholar 

  • Gupta, S. K., & Gupta, I. C. (1987). Management of saline soils and waters. New Delhi: Oxford & IBH Publishing Company.

    Google Scholar 

  • Halim, M. A., Majumder, R. K., Nessa, S. A., Hiroshiro, Y., Sasaki, K., Saha, B. B., Saepuloh, A., & Jinno, K. (2010). Evaluation of processes controlling the geochemical constituents in deep groundwater in Bangladesh: spatial variability on arsenic and boron enrichment. Journal of Hazardous Materials, 180(1–3), 50–62. https://doi.org/10.1016/j.jhazmat.2010.01.008.

    Article  CAS  Google Scholar 

  • Kazi, T. G., Arain, M. B., Jamali, M. K., Jalbani, N., Afridi, H. I., Sarfraz, R. A., Baig, J. A., & Shah, A. Q. (2009). Assessment of water quality of polluted lake using multivariate statistical techniques: a case study. Ecotoxicology and Environmental Safety, 72(2), 301–309. https://doi.org/10.1016/j.ecoenv.2008.02.024.

    Article  CAS  Google Scholar 

  • Kudoda, A. M., & Abdalla, O. A. E. (2015). Hydrochemical characterization of the main aquifers in Khartoum, the capital city of Sudan. Environmental Earth Sciences, 74(6), 4771–4786. https://doi.org/10.1007/s12665-015-4464-x.

    Article  CAS  Google Scholar 

  • Manzoor, S., Shah, M. H., Shaheen, N., Khalique, A., & Jaffar, M. (2006). Multivariate analysis of trace metals in textile effluents in relation to soil and groundwater. Journal of Hazardous Materials, 137(1), 31–37. https://doi.org/10.1016/j.jhazmat.2006.01.077.

    Article  CAS  Google Scholar 

  • Mapoma, H. W. T., & Xie, X. (2014). Basement and alluvial aquifers of Malawi: an overview of groundwater quality and policies. African Journal of Environmental Science and Technology, 8(3), 190–202. https://doi.org/10.5897/ajest2013.1639.

    Article  Google Scholar 

  • Mapoma, H. W. T., Xie, X., & Zhang, L. (2014). Redox control on trace element geochemistry and provenance of groundwater in fractured basement of Blantyre, Malawi. Journal of African Earth Sciences, 100, 335–345. https://doi.org/10.1016/j.jafrearsci.2014.07.010.

    Article  CAS  Google Scholar 

  • Mullane, J. M., Flury, M., Iqbal, H., Freeze, P. M., Hinman, C., Cogger, C. G., & Shi, Z. (2015). Intermittent rainstorms cause pulses of nitrogen, phosphorus, and copper in leachate from compost in bioretention systems. Sci Total Environ, 537, 294–303. https://doi.org/10.1016/j.scitotenv.2015.07.157.

    Article  CAS  Google Scholar 

  • Pathak, H., & Limaye, S. N. (2011). Study of seasonal variation in groundwater quality of Sagar City (India) by principal component analysis. E-Journal of Chemistry, 8(4), 2000–2009. https://doi.org/10.1155/2011/765749.

    Article  CAS  Google Scholar 

  • Rafique, T., Naseem, S., Bhanger, M. I., & Usmani, T. H. (2008). Fluoride ion contamination in the groundwater of Mithi sub-district, the Thar Desert, Pakistan. Environmental Geology, 56(2), 317–326. https://doi.org/10.1007/s00254-007-1167-y.

    Article  CAS  Google Scholar 

  • Rahman, M. M., Naidu, R., & Bhattacharya, P. (2009). Arsenic contamination in groundwater in the Southeast Asia region. Environmental Geochemistry and Health, 31(1), 9–21. https://doi.org/10.1007/s10653-008-9233-2.

    Article  CAS  Google Scholar 

  • Rahman, M. M., Asaduzzaman, M., & Naidu, R. (2013). Consumption of arsenic and other elements from vegetables and drinking water from an arsenic-contaminated area of Bangladesh. Journal of Hazardous Materials, 262, 1056–1063. https://doi.org/10.1016/j.jhazmat.2012.06.045.

    Article  CAS  Google Scholar 

  • Rajesh, R., Brindha, K., & Elango, L. (2015). Groundwater quality and its hydrochemical characteristics in a shallow weathered rock aquifer of southern India. Water Quality, Exposure and Health, 7(4), 515–524. https://doi.org/10.1007/s12403-015-0166-6.

    Article  CAS  Google Scholar 

  • Rice, E. W., Baird, R. B., Eaton, A. D., & Clesceri, L. S. (Eds.). (2012). Standard methods for the examination of water and wastewater (22nd ed.). Washington, DC: American Public Health Association, American Water Works Association, Water Environment Federation.

    Google Scholar 

  • Salcedo-Sánchez, E. R., Hoyos, S. E. G., Alberich, M. V. E., & Morales, M. M. (2016). Application of water quality index to evaluate groundwater quality (temporal and spatial variation) of an intensively exploited aquifer (Puebla valley, Mexico). Environmental Monitoring and Assessment, 188(10), 573.

    Article  CAS  Google Scholar 

  • Smedley, P., & Kinniburgh, D. (2002). A review of the source, behaviour and distribution of arsenic in natural waters. Applied Geochemistry, 17(5), 517–568. https://doi.org/10.1016/S0883-2927(02)00018-5.

    Article  CAS  Google Scholar 

  • Stuyfzand, P. J. (1989). Nonpoint source of trace element in potable groundwater in Netherland. In Proceedings of the 18th TWSA Water Workings, KIWA, 1989. Nieuwegein: Testing and Research Institute.

  • Valipour, M. (2014). Drainage, waterlogging, and salinity. Archives of Agronomy and Soil Science, 60(12), 1625–1640. https://doi.org/10.1080/03650340.2014.905676.

    Article  Google Scholar 

  • WHO. (2011). Guidelines for drinking-water quality (4th ed.). Geneva, Switzerland: World Health Organization.

    Google Scholar 

  • Zouahri, A., Dakak, H., Douaik, A., El Khadir, M., & Moussadek, R. (2015). Evaluation of groundwater suitability for irrigation in the Skhirat region, northwest of Morocco. Environmental Monitoring and Assessment, 187(1), 4184. https://doi.org/10.1007/s10661-014-4184-9.

    Article  CAS  Google Scholar 

Download references

Funding

The authors acknowledge the material support from Water and Sanitation Agency Lahore, Pakistan. The research work was financially supported by National Natural Science Foundation of China (No. 41521001, No. 40802058, and No. 41502230).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Zainab Abbas or Harold Wilson Tumwitike Mapoma.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Abbas, Z., Mapoma, H.W.T., Su, C. et al. Spatial analysis of groundwater suitability for drinking and irrigation in Lahore, Pakistan. Environ Monit Assess 190, 391 (2018). https://doi.org/10.1007/s10661-018-6775-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10661-018-6775-3

Keywords

Navigation