Advertisement

Comparison of different heuristic and decomposition techniques for river stage modeling

Article
  • 17 Downloads

Abstract

This paper proposes hybrid soft computing models for daily river stage modeling. The models combine variational mode decomposition (VMD) with different soft computing models, including artificial neural network (ANN), adaptive neuro-fuzzy inference system (ANFIS), and random forest (RF). The performances of VMD-based models (VMD-ANN, VMD-ANFIS, and VMD-RF) are assessed by model efficiency indices and graphical comparison, and compared with those of single models (ANN, ANFIS, and RF) and ensemble empirical mode decomposition (EEMD)-based models (EEMD-ANN, EEMD-ANFIS, and EEMD-RF). Results show that VMD-ANN, VMD-ANFIS, and VMD-RF models are more efficient and accurate than ANN, ANFIS, and RF models, respectively, and slightly better than EEMD-ANN, EEMD-ANFIS, and EEMD-RF models, respectively. In terms of model efficiency and accuracy, the top five models are VMD-ANFIS, EEMD-ANFIS, VMD-ANN, VMD-RF, and ANFIS and the VMD-ANFIS model is the best. It is found that VMD can enhance the performance of conventional single soft computing models; VMD is more effective than EEMD for hybrid model development; and the ANFIS model combined with VMD and EEMD can yield better efficiency and accuracy than other models. Therefore, VMD-based hybrid modeling is a more effective method for reliable daily river stage modeling.

Keywords

Variational mode decomposition Ensemble empirical mode decomposition Heuristic techniques Artificial neural networks Adaptive neuro-fuzzy inference system Random forest 

Notes

Funding information

The second author, Professor Sungwon Kim, would like to appreciate the financial support from Dongyang University, South Korea. This study was supported by grant from Dongyang University in 2017.

References

  1. Abdoos, A. A., Mianaei, P. K., & Ghadikolaei, M. R. (2016). Combined VMD-SVM based feature selection method for classification of power quality events. Applied Soft Computing, 38, 637–646.  https://doi.org/10.1016/j.asoc.2015.10.038.CrossRefGoogle Scholar
  2. Adamowski, J., & Chan, H. F. (2011). A wavelet neural network conjunction model for groundwater level forecasting. Journal of Hydrology, 407(1–4), 28–40.  https://doi.org/10.1016/j.jhydrol.2011.06.013.CrossRefGoogle Scholar
  3. Adamowski, J., Chan, H. F., Prasher, S. O., Ozga-Zielinski, B., & Sliusarieva, A. (2012). Comparison of multiple linear and nonlinear regression, autoregressive integrated moving average, artificial neural network, and wavelet artificial neural network methods for urban water demand forecasting in Montreal, Canada. Water Resources Research, 48(1), W01528.  https://doi.org/10.1029/2010WR009945.CrossRefGoogle Scholar
  4. ASCE Task Committee on Application of Artificial Neural Networks in Hydrology. (2000). Artificial neural networks in hydrology. I: preliminary concepts. Journal of Hydrologic Engineering, 5(2), 115–123.  https://doi.org/10.1061/(ASCE)1084-0699(2000)5:2(115).CrossRefGoogle Scholar
  5. Azad, S., Debnath, S., & Rajeevan, M. (2015). Analysing predictability in Indian monsoon rainfall: a data analytic approach. Environ Process, 2(4), 717–727.  https://doi.org/10.1007/s40710-015-0108-0.CrossRefGoogle Scholar
  6. Bertsekas, D. P. (1996). Constrained optimization and Lagrange multiplier methods. Belmont, MA: Athena Scientific.Google Scholar
  7. Breiman, L. (2001). Random forests. Machine Learning, 45(1), 5–32.  https://doi.org/10.1023/A:1010933404324.CrossRefGoogle Scholar
  8. Chen, X., Wang, M., Zhang, Y., Feng, Y., Wu, Z., & Huang, N. E. (2013). Detecting signals from data with noise: theory and applications. Journal of the Atmospheric Sciences, 70, 1489–1504.  https://doi.org/10.1175/JAS-D-12-0213.1.CrossRefGoogle Scholar
  9. Chiu, S. L. (1994). Fuzzy model identification based on cluster estimation. Journal of Intelligent Fuzzy Systems, 2(3), 267–278.  https://doi.org/10.3233/IFS-1994-2306.Google Scholar
  10. Dawson, C. W., & Wilby, R. L. (2001). Hydrological modelling using artificial neural networks. Progress in Physical Geography, 25(1), 80–108.  https://doi.org/10.1177/030913330102500104.CrossRefGoogle Scholar
  11. Dragomiretskiy, K., & Zosso, D. (2014). Variational mode decomposition. IEEE Signal Process, 62(3), 531–544.  https://doi.org/10.1109/TSP.2013.2288675.CrossRefGoogle Scholar
  12. Fan, H., & He, D. (2015). Temperature and precipitation variability and its effects on streamflow in the upstream regions of the Lancang-Mekong and Nu-Salween Rivers. Journal of Hydrometeorology, 16, 2248–2263.  https://doi.org/10.1175/JHM-D-14-0238.1.CrossRefGoogle Scholar
  13. Günther, F., & Fritsch, S. (2010). Neuralnet: training of neural networks. R J, 2(1), 30–38.Google Scholar
  14. Helske J, Luukko P (2016) Rlibeemd: ensemble empirical mode decomposition (EEMD) and its complete variant (CEEMDAN). https://cran.r-project.org/web/packages/Rlibeemd/ Rlibeemd.pdf. Accessed 14 August 2017.
  15. Huang, N., Yuan, C., Cai, G., & Xing, E. (2016). Hybrid short term wind speed forecasting using variational mode decomposition and a weighted regularized extreme learning machine. Energies, 9, 989.  https://doi.org/10.3390/en9120989.CrossRefGoogle Scholar
  16. Huang, S., Chang, J., Huang, Q., & Chen, Y. (2014). Monthly streamflow prediction using modified EMD-based support vector machine. Journal of Hydrology, 511, 764–775.  https://doi.org/10.1016/j.jhydrol.2014.01.062.CrossRefGoogle Scholar
  17. Jang, J. S. R., Sun, C. T., & Mizutani, E. (1997). Neuro-fuzzy and soft computing: a computational approach to learning and machine intelligence. New Jersey: Prentice-Hall.Google Scholar
  18. Kim, S., Seo, Y., & Singh, V. P. (2015). Assessment of pan evaporation modeling using bootstrap resampling and soft computing methods. Journal of Computing in Civil Engineering, 29(5), 04014063.  https://doi.org/10.1061/(ASCE)CP.1943-5487.0000367.CrossRefGoogle Scholar
  19. Kisi, O., Latifoğlu, L., & Latifoğlu, F. (2014). Investigation of empirical mode decomposition in forecasting of hydrological time series. Water Resour Manag, 28(12), 4045–4057.  https://doi.org/10.1007/s11269-014-0726-8.CrossRefGoogle Scholar
  20. Lahmiri, S. (2016a). A variational mode decomposition approach for analysis and forecasting of economic and financial time series. Expert Systems with Applications, 55, 268–273.  https://doi.org/10.1016/j.eswa.2016.02.025.CrossRefGoogle Scholar
  21. Lahmiri, S. (2016b). Intraday stock price forecasting based on variational mode decomposition. Journal of Computer Science, 12, 23–27.  https://doi.org/10.1016/j.jocs.2015.11.011.CrossRefGoogle Scholar
  22. Luenberger, D. G., & Ye, Y. (2008). Linear and nonlinear programming. 3rd edn. New York: Springer.Google Scholar
  23. MathWorks (2017) Fuzzy logic toolbox: user’s guide. The MathWorks, Inc. http://www.mathworks.com/help/pdf_doc/fuzzy/fuzzy.pdf. Accessed 14 August 2017.
  24. Montgomery, D. C., & George, C. R. (2003). Applied statistics and probability for engineers (3rd ed.). New York: John Wiley & Sons.Google Scholar
  25. Moosavi, V., Vafakhah, M., Shirmohammadi, B., & Behnia, N. (2013). A wavelet-ANFIS hybrid model for groundwater level forecasting for different prediction periods. Water Resources Management, 27, 1301–1321.  https://doi.org/10.1007/s11269-012-0239-2.CrossRefGoogle Scholar
  26. Nguyen TT (2015) An L1-regression random forests method for forecasting of Hoa Binh reservoir’s incoming flow. In: Proceedings of 2015 Seventh International Conference on Knowledge and Systems Engineering (KSE), Ho Chi Minh City, Vietnam, pp 360–364. doi: 10.1109/KSE.2015.52.Google Scholar
  27. Partal, T., & Cigizoglu, H. K. (2008). Estimation and forecasting of daily suspended sediment data using wavelet-neural networks. Journal of Hydrology, 358(3–4), 317–331.  https://doi.org/10.1016/j.jhydrol.2008.06.013.CrossRefGoogle Scholar
  28. Rajaee, T., Nourani, V., Mohammad, Z. K., & Kisi, O. (2011). River suspended sediment load prediction: application of ANN and wavelet conjunction model. Journal of Hydrologic Engineering, 16(8), 613–627.  https://doi.org/10.1061/(ASCE)HE.1943-5584.0000347.CrossRefGoogle Scholar
  29. Seo, Y., & Kim, S. (2016). Hydrological forecasting using hybrid data-driven approach. American Journal of Applied Sciences, 13(8), 891–899.  https://doi.org/10.3844/ajassp.2016.891.899.CrossRefGoogle Scholar
  30. Seo, Y., Kim, S., Kisi, O., & Singh, V. P. (2015a). Daily water level forecasting using wavelet decomposition and artificial intelligence techniques. Journal of Hydrology, 520, 224–243.  https://doi.org/10.1016/j.jhydrol.2014.11.050.CrossRefGoogle Scholar
  31. Seo, Y., Kim, S., & Singh, V. P. (2015b). Multistep-ahead flood forecasting using wavelet and data-driven methods. KSCE Journal of Civil Engineering, 19(2), 401–417.  https://doi.org/10.1007/s12205-015-1483-9.CrossRefGoogle Scholar
  32. Seo, Y., Kim, S., Kisi, O., Singh, V. P., & Parasuraman, K. (2016). River stage forecasting using wavelet packet decomposition and machine learning models. Water Resources Management, 30(11), 4011–4035.  https://doi.org/10.1007/s11269-016-1409-4.CrossRefGoogle Scholar
  33. Shi, P., & Yang, W. (2017). Precise feature extraction from wind turbine condition monitoring signals by using optimized variational mode decomposition. IET Renew Power Gen, 11(3), 245–252.  https://doi.org/10.1049/iet-rpg.2016.0716.CrossRefGoogle Scholar
  34. Sumathi, S., & Paneerselvam, S. (2010). Computational intelligence paradigms: theory and applications using MATLAB. New York: CRC Press.Google Scholar
  35. Sun, G., Chen, T., Wei, Z., Sun, Y., Zang, H., & Chen, S. (2016). A carbon price forecasting model based on variational mode decomposition and spiking neural networks. Energies, 9, 54.  https://doi.org/10.3390/en9010054.CrossRefGoogle Scholar
  36. Takagi, T., & Sugeno, M. (1985). Fuzzy identification of systems and its application to modeling and control. IEEE Transactions on Systems, Man, and Cybernetics, 15(1), 116–132.  https://doi.org/10.1109/TSMC.1985.6313399.CrossRefGoogle Scholar
  37. Tiwari, M., & Adamowski, J. (2013). Urban water demand forecasting and uncertainty assessment using ensemble wavelet-bootstrap-neural network models. Water Resources Research, 49(10), 6486–6507.  https://doi.org/10.1002/wrcr.20517.CrossRefGoogle Scholar
  38. Wang, W., Chau, K., Xu, D., & Chen, X. Y. (2015). Improving forecasting accuracy of annual runoff time series using ARIMA based on EEMD decomposition. Water Resources Management, 29(8), 2655–2675.  https://doi.org/10.1007/s11269-015-0962-6.CrossRefGoogle Scholar
  39. Wang, W., Xu, D., Chau, K., & Chen, S. (2013). Improved annual rainfall-runoff forecasting using PSO-SVM model based on EEMD. Journal of Hydroinformatics, 15(4), 1377–1390.  https://doi.org/10.2166/hydro.2013.134.CrossRefGoogle Scholar
  40. Wu, Z., & Huang, N. E. (2004). A study of the characteristics of white noise using the empirical mode decomposition method. Proceedings of the Royal Society of London A, 460(2046), 1597–1611.  https://doi.org/10.1098/rspa.2003.1221.CrossRefGoogle Scholar
  41. Wu, Z., & Huang, H. E. (2009). Ensemble empirical mode decomposition: a noise-assisted data analysis method. Adv Adaptive Data Analy, 1(1), 1–41.  https://doi.org/10.1142/S1793536909000047.CrossRefGoogle Scholar
  42. Xu, J., Chen, Y., Bai, L., & Xu, Y. (2016). A hybrid model to simulate the annual runoff of the Kaidu River in northwest China. Hydrology and Earth System Sciences, 20(4), 1447–1457.  https://doi.org/10.5194/hess-20-1447-2016.CrossRefGoogle Scholar
  43. Zell A, Mamier G, Mache MVN, Hübner R, Döring S, Herrmann K-U, Soyez T, Sommer MST, Hatzigeorgiou A, Schreiner DPT, Kett B, Wieland GCJ, Gatter J (1998) Stuttgart neural network simulator (SNNS) v. 4.2 user manual. http://www.ra.cs.uni-tuebingen.de/ downloads/SNNS/SNNSv4.2.Manual.pdf. Accessed 17 April 2018.

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of Constructional and Environmental EngineeringKyungpook National UniversitySangjuSouth Korea
  2. 2.Department of Railroad Construction and Safety EngineeringDongyang UniversityYeongjuSouth Korea
  3. 3.Department of Biological and Agricultural Engineering & Zachry Department of Civil EngineeringTexas A & M UniversityCollege StationUSA

Personalised recommendations