Skip to main content

Advertisement

Log in

Natural and anthropic processes controlling groundwater hydrogeochemistry in a tourist destination in northeastern Brazil

  • Published:
Environmental Monitoring and Assessment Aims and scope Submit manuscript

Abstract

The objective of this study was to analyze spatial-seasonal changes to identify the natural and anthropic processes that control groundwater hydrogeochemistry in urban aquifers in municipality of Lençóis (Bahia). Tourism is the main activity of this municipality, which is an important tourist destination in northeastern Brazil and which maintains its tourism infrastructure by using groundwater. Two field campaigns were conducted (dry and rainy seasons) in order to collect groundwater samples extracted from 15 tubular wells distributed over the urban area of the municipality. The Piper diagram, multivariate statistical analyses, and artificial neural networks indicated that there are two types of water (Na–Cl and Na–\( {\mathrm{SO}}_4^2 \)), which were divided into five different clusters. Seasonal variation was observed to significantly alter groundwater hydrogeochemistry. According to the Gibbs diagram, groundwater within the urban area of Lençóis belonged to the rainfall dominance, demonstrating low water-rock interaction. Hydrogeochemical modeling results suggested hydrolysis as the main natural factors controlling process. However, mineral dissolution also occurred in one of the clusters. Human-originated trace contamination by nitrate, chloride, and sulfate occurred in a zone of the urban area. This contamination was observed regardless of climate seasonality, indicating that the main controlling process for groundwater hydrochemistry in this region is wastewater mobilization (indirect artificial recharge).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Ab’Saber, A. (2003). Os domínios de natureza no Brasil. São Paulo: Ateliê Editorial.

    Google Scholar 

  • Abbaspour, K. C., Faramarzi, M., Ghasemi, S. S., & Yang, H. (2009). Assessing the impact of climate change on water resources in Iran. Water Resources Research, 45, W10434. https://doi.org/10.1029/2008WR007615.

    Article  Google Scholar 

  • Alvares, C. A., Stape, J. L., Sentelhas, P. C., Gonçalves, J. L. M., & Sparovek, G. (2013). Köppen’s climate classification map for Brazil. Meteorologische Zeitschrif, 22(6), 711–728. https://doi.org/10.1127/0941-2948/2013/0507.

    Article  Google Scholar 

  • Ammar, F. H., Chkir, N., Zouari, K., Hamelin, B., Deschamps, P., & Aigoun, A. (2014). Hydro-geochemical processes in the complex terminal aquifer of southern Tunisia: an integrated investigation based on geochemical and multivariate statistical methods. Journal of African Earth Sciences, 100, 81–85. https://doi.org/10.1016/j.jafrearsci.2014.06.015.

    Article  CAS  Google Scholar 

  • APHA – American Public Health Association. (2012). Standard methods for the examination of water and wastewater. 22th ed. Washington.

  • Baken, S., Sjöstedt, C., Gustafsson, J. P., Seuntjens, P., Desmet, N., De Schutter, J., & Smolders, E. (2013). Characterisation of hydrous ferric oxides derived from iron-rich groundwaters and their contribution to the suspended sediment of streams. Applied Geochemistry, 39, 59–68. https://doi.org/10.1016/j.apgeochem.2013.09.013.

    Article  CAS  Google Scholar 

  • Becken, S. (2014). Water equity—contrasting tourism water use with that of the local community. Water Resources and Industry, 7-8, 9–22. https://doi.org/10.1016/j.wri.2014.09.002.

    Article  Google Scholar 

  • BRASIL. Conselho Nacional de Meio Ambiente-CONAMA. (2008). Resolução 396. Dispõe sobre a classificação e diretrizes ambientais para o enquadramento das águas subterrâneas, e dá outras providências. Brasília-DF.

  • BRASIL. Ministério da Saúde. (2011). Portaria 2.914. Dispõe sobre os procedimentos de controle e de vigilância da qualidade da água para consumo humano e seu padrão de potabilidade, e dá outras providências. Legislação. Brasília-DF.

  • CETESB. Companhia Ambiental do Estado de São Paulo. (2005). Decisão de Diretoria nº 195-2005. São Paulo: CETESB.

  • Chen, I.-T., Chang, L.-C., & Chang, F.-J. (2018). Exploring the spatio-temporal interrelation between groundwater and surface water by using the self-organizing maps. Journal of Hydrology, 556, 131–142. https://doi.org/10.1016/j.jhydrol.2017.10.015.

    Article  Google Scholar 

  • CPRM. Serviço Geológico do Brasil. (2005). Projeto Cadastro de Fontes de Abastecimento por Água Subterrânea. Diagnóstico do Município de Lençóis, Estado da Bahia. In: Vieira, A. T.; Melo, F.; Lopes, H. B. V.; Campos, J. C. V.; Guimarães, J. T.; Costa, J. M.; Bomfim, L. F. C.; Couto, P. A. A.; Benvenutti, S. M. P. da (org.). Salvador. 22p.

  • Custódio, E. G., & Llamas, M. R. (1983). Hidrologia Subterrânea. Barcelona: Ediciones Omega S.A. 2 v.

    Google Scholar 

  • Devic, G., Djordjevic, D., & Sakan, S. (2014). Natural and anthropogenic factors affecting the groundwater quality in Serbia. Science of the Total Environment, 468-469, 933–942. https://doi.org/10.1016/j.scitotenv.2013.09.011.

    Article  CAS  Google Scholar 

  • Dokou, Z., Kourgialas, N. N., & Karatzas, G. P. (2015). Assessing groundwater quality in Greece based on spatial and temporal analysis. Environmental Monitoring and Assessment, 187, 144. https://doi.org/10.1007/s10661-015-4998-0.

    Article  CAS  Google Scholar 

  • Elisante, E., & Muzuka, A. N. N. (2017). Occurrence of nitrate in Tanzanian groundwater aquifers: a review. Applied Water Science, 7(1), 71–87. https://doi.org/10.1007/s13201-015-0269-z.

    Article  Google Scholar 

  • Farsadnia, E., Rostami, K. M., Moghaddam, N. A., Modarres, R., Bray, M. T., Han, D., & Sadatinejad, J. (2014). Identification of homogeneous regions for regionalization of watersheds by two-level self-organizing feature maps. Journal of Hydrology, 509, 387–397. https://doi.org/10.1016/j.jhydrol.2013.11.050.

    Article  Google Scholar 

  • Galindo, G., Sainato, C., Dapeña, C., Fernández-Turiel, J. L., Gimeno, D., Pomposiello, M. C., & Panarello, H. O. (2007). Surface and groundwater quality in the northeastern region of Buenos Aires Province, Argentina. Journal of South American Earth Sciences, 23(4), 336–345. https://doi.org/10.1016/j.jsames.2007.02.001.

    Article  CAS  Google Scholar 

  • Gastmans, D., Chang, H. K., & Hutcheon, I. (2010). Groundwater geochemical evolution in the northern portion of the Guarani aquifer system (Brazil) and its relationship to diagenetic features. Applied Geochemistry, 25, 16–33. https://doi.org/10.1016/j.apgeochem.2009.09.024.

    Article  CAS  Google Scholar 

  • Gibbs, R. J. (1970). Mechanisms controlling world water chemistry. Science, 17, 1088–1090.

    Article  Google Scholar 

  • Gleeson, T., Befus, K. M., Jasechko, S., Luijendijk, E., & Cardenas, M. B. (2015). The global volume and distribution of modern groundwater. Nature Geoscience, 9, 161–167. https://doi.org/10.1038/ngeo2590.

    Article  CAS  Google Scholar 

  • Hansen, B., Thorling, L., Schullehner, J., Termansen, M., & Dalgaard, T. (2017). Groundwater nitrate response to sustainable nitrogen management. Scientific Reports, 7, 8566. https://doi.org/10.1038/s41598-017-07147-2.

    Article  CAS  Google Scholar 

  • Hassane, A. B., Leduc, C., Favreau, G., Bekins, B. A., & Margueron, T. (2016). Impacts of a large Sahelian city on groundwater hydrodynamics and quality: Example of Niamey (Niger). Hydrogeology Journal, 24(2), 407–423. https://doi.org/10.1007/s10040-015-1345-z.

    Article  CAS  Google Scholar 

  • Hosono, T., Wang, C. H., Umezawa, Y., Nakano, T., Onodera, S. I., Nagata, T., Yoshimizu, C., Tayasu, I., & Taniguchi, M. (2011). Multiple isotope (H, N, O, S and Sr) approach elucidates complex pollution causes in the shallow groundwaters of the Taipei urban area. Journal of Hydrology, 397, 23–36. https://doi.org/10.1016/j.jhydrol.2010.11.025.

    Article  CAS  Google Scholar 

  • IBGE. Instituto Brasileiro de Geografia e Estatística. (2017). Cidades - Estimativas de população. Available in: <http://www.ibge.gov.br/home/estatistica/populacao/estimativa2017/estimativa_tcu.shtm>. Access in: April 23, 2018.

  • Jia, Y., Guo, H., Xi, B., Jiang, Y., Zhang, Z., Yuan, R., Yi, W., & Xue, X. (2017). Sources of groundwater salinity and potential impact on arsenic mobility in the western Hetao Basin, Inner Mongolia. Science of the Total Environment, 601-602, 691–702. https://doi.org/10.1016/j.scitotenv.2017.05.196.

    Article  CAS  Google Scholar 

  • Jin, Y. H., Kawamura, A., Park, S. C., Nakagawa, N., Amaguchi, H., & Olsson, J. (2011). Spatiotemporal classification of environmental monitoring data in the Yeongsan River basin, Korea, using self-organizing maps. Journal Environment Monitoring, 13(10), 2886–2894. https://doi.org/10.1039/c1em10132c.

    Article  CAS  Google Scholar 

  • Kändler, M., Blechinger, K., Seidler, C., Pavlu, V., Sanda, M., Dostál, T., Krasa, J., Vitvar, T., & Stich, M. (2017). Impact of land use on water quality in the upper Nisa catchment in the Czech Republic and in Germany. Science of the Total Environment, 586, 1316–1325. https://doi.org/10.1016/j.scitotenv.2016.10.221.

    Article  CAS  Google Scholar 

  • Kløve, B., Kvitsand, H. M. L., Pitkänen, T., Gunnarsdottir, M. J., Gaut, S., Gardarsson, S. M., Rossi, P. M., & Miettinen, I. (2017). Overview of groundwater sources and water-supply systems, and associated microbial pollution, in Finland, Norway and Iceland. Hydrogeology Journal, 1–12. https://doi.org/10.1007/s10040-017-1552-x.

  • Kohonen, T. (2001). Self-organizing maps, third ed. Springer.

  • Koppen, W. (1948). Climatologia con un estudio de los climas de la tierra (transl. P. R. H. Peres), Fondo de Cultura e Economica, Mexico City, Mexico.

  • Kurunc, A., Ersahin, S., Sonmez, N. K., Kaman, H., Uz, H., Uz, B. Y., & Aslan, G. E. (2016). Seasonal changes of spatial variation of some groundwater quality variables in a large irrigated coastal Mediterranean region of Turkey. Science of the Total Environment, 554-555, 53–63. https://doi.org/10.1016/j.scitotenv.2016.02.158.

    Article  CAS  Google Scholar 

  • Lapworth, D. J., Krishan, G., MacDonald, A. M., & Rao, M. S. (2017). Groundwater quality in the alluvial aquifer system of Northwest India: New evidence of the extent of anthropogenic and geogenic contamination. Science of the Total Environment, 599-600, 1433–1444. https://doi.org/10.1016/j.scitotenv.2017.04.223.

    Article  CAS  Google Scholar 

  • Lawrence, A., Gooddy, D., Kanatharana, P., Meesilp, W., & Ramnarong, V. (2000). Groundwater evolution beneath Hat Yai, a rapidly developing city in Thailand. Hydrogeology Journal, 8, 564–575. https://doi.org/10.1007/s100400000098.

    Article  CAS  Google Scholar 

  • Liu, Y., Jiao, J. J., Liang, W., & Kuang, X. (2017). Hydrogeochemical characteristics in coastal groundwater mixing zone. Applied Geochemistry, 85, 49–60. https://doi.org/10.1016/j.apgeochem.2017.09.002.

    Article  CAS  Google Scholar 

  • Marić, N., Kurilić, S. M., Matić, I., Sorajić, S., & Zarić, J. (2014). Groundwater quality on the territory of Kikinda municipality (Vojvodina, Serbia). Environmental Earth Sciences, 72, 525–534. https://doi.org/10.1007/s12665-013-2973-z.

    Article  CAS  Google Scholar 

  • Martini, J. E. J. (2000). Dissolution of quartz and silicate minerals. In A. B. Klimchouk, D. C. Ford, A. N. Palmer, & W. Dreybrodt (Eds.), Speleogenesis. Evolution of karst aquifers (pp. 171–174). Huntsville: National Speleological Society.

    Google Scholar 

  • Mattos, J. B., & De Paula, F. C. F. (2017). Análise geoambiental de uma microbacia hidrográfica no município de Lençóis, Chapada Diamantina (Bahia), Brasil. Sociedade & Natureza, 29(1), 91–107. https://doi.org/10.1590/1982-451320170107.

    Article  Google Scholar 

  • Mattos, J. B., Cruz, M. J. M., De Paula, F. C. F., & Sales, E. F. (2017). Tipologia hidrogeoquímica e qualidade das águas subterrâneas na área Urbana do município de Lençóis, Bahia, Nordeste do brasil. Águas Subterrâneas, 31(3), 281–295. https://doi.org/10.14295/ras.v31i3.28852.

    Article  Google Scholar 

  • Mattos, J. B., Santos, D. A., Falcão-Filho, C. A. T., Santos, T. J., Santos, M. G., & De Paula, F. C. F. (2018). Water production in a Brazilian montane rainforest: Implications for water resources management. Environmental Science and Policy, 84, 52–59. https://doi.org/10.1016/j.envsci.2018.03.004.

    Article  Google Scholar 

  • Morrissey, P. J., Johnston, P. M., & Gill, L. W. (2015). The impact of on-site wastewater from high density cluster developments on groundwater quality. Journal of Contaminant Hydrology, 182, 36–50. https://doi.org/10.1016/j.jconhyd.2015.07.008.

    Article  CAS  Google Scholar 

  • Neukum, C., & Azzam, R. (2012). Impact of climate change on groundwater recharge in a small catchment in the Black Forest, Germany. Hydrogeology Journal, 20(3), 547–560. https://doi.org/10.1007/s10040-011-0827-x.

    Article  Google Scholar 

  • New, M. (2002). Climate change and water resources in the southwestern cape, South Africa. South African Journal of Science, 98(7), 1–8 http://hdl.handle.net/10520/EJC97508.

    Google Scholar 

  • Nguyen, T. T., Kawamura, A., Tong, T. N., Nakagawa, N., Amaguchi, H., & Gilbuena Jr., R. (2014). Hydrogeochemical characteristics of groundwater from the two main aquifers in the Red River Delta, Vietnam. Journal of Asian Earth Sciences, 93, 180–192. https://doi.org/10.1016/j.jseaes.2014.07.035.

    Article  Google Scholar 

  • Nguyen, T. T., Kawamura, A., Tong, T. N., Amaguchi, H., Nakagawa, N., Gilbuena Jr., R., & Bui, D. D. (2015). Identification of spatio-seasonal hydrogeochemical characteristcs of the unconfined groundwater in the Red River Delta, Vietnam. Applied Geochemistry, 63, 10–21. https://doi.org/10.1016/j.apgeochem.2015.07.009.

    Article  CAS  Google Scholar 

  • Okello, C., Antonellini, M., Greggio, N., & Wanbiji, N. (2015). Freshwater resource characterization and vulnerability to climate change of the Shela aquifer in Lamu, Kenya. Environmental Earth Sciences, 73, 3801–3817. https://doi.org/10.1007/s12665-014-3665-z.

    Article  CAS  Google Scholar 

  • Parkhurst, D. L., & Appelo, C. A. J. (1999). User’s guide to PHREEQ C–A computer program for speciation, batch reaction, one-dimensional transport and inverse geochemical calculations. Denver: USGS. Water resources investigation Report, 99-4259, 310.

    Google Scholar 

  • Piao, S., Ciais, P., Huang, Y., Shen, Z., Peng, S., Li, J., Zhou, L., Lui, H., Ma, Y., Ding, Y., Friedlingstein, P., Liu, C., Tan, K., Yu, Y., Zhang, T., & Fang, J. (2010). The impacts of climate change on water resources and agriculture in China. Nature, 467(2), 43–51. https://doi.org/10.1038/nature09364.

    Article  CAS  Google Scholar 

  • Piper, A. M. (1944). A graphic procedure in the geochemical interpretation of water-analyses. Transactions American Geophysical Union, 25(6), 914–928. https://doi.org/10.1029/TR025i006p00914.

    Article  Google Scholar 

  • Rozell, D. J., & Wong, T.-F. (2010). Effects of climate change on groundwater resources at Shelter Island, New York state, USA. Hydrogeology Journal, 18(7), 1657–1665. https://doi.org/10.1007/s10040-010-0615-z.

    Article  CAS  Google Scholar 

  • Sawyer, C. N., McCarty, P. L., & Parkin, G. F. (2000). Chemistry for sanitary engineers. 4° ed. New York: McGraw-Hill.

    Google Scholar 

  • Seeboonruang, U. (2016). Impact assessment of climate change on groundwater and vulnerability to drought of areas in eastern Thailand. Environmental Earth Sciences, 75, 42. https://doi.org/10.1007/s12665-015-4896-3.

    Article  Google Scholar 

  • Selvakumar, S., Chandrasekar, N., & Kumar, G. (2017). Hydrogeochemical characteristics and groundwater contamination in the rapid urban development areas of Coimbatore, India. Water Resources and Industry, 17, 26–33. https://doi.org/10.1016/j.wri.2017.02.002.

    Article  Google Scholar 

  • Silva-Filho, E. V., Barcellos, R. G. S., Emblanch, C., Blavoux, B., Sella, S. M., Daniel, M., Simler, R., & Wasserman, J. C. (2009). Groundwater chemical characterization of a Rio de Janeiro coastal aquifer, SE – Brazil. Journal of South American Earth Sciences, 27(1), 100–108. https://doi.org/10.1016/j.jsames.2008.11.004.

    Article  CAS  Google Scholar 

  • Singh, A. K., Raj, B., Tiwari, A. K., & Mahato, M. K. (2013). Evaluation of hydrogeochemical processes and groundwater quality in the Jhansi district of Bundelkhand region, India. Environmental Earth Sciences, 70(3), 1225–1247. https://doi.org/10.1007/s12665-012-2209-7.

    Article  CAS  Google Scholar 

  • Song, S.-H., & Zemansky, G. (2013). Groundwater level fluctuation in the Waimea Plains, New Zealand: changes in a coastal aquifer within the last 30 years. Environmental Earth Sciences, 70, 2167–2178. https://doi.org/10.1007/s12665-013-2359-2.

    Article  Google Scholar 

  • Sprenger, C., & Lorenzen, G. (2014). Hydrogeochemistry of urban floodplain aquifer under the influence of Contaminated River seepage in Delhi (India). Aquatic Geochemistry, 20(5), 519–543. https://doi.org/10.1007/s10498-014-9234-y.

    Article  CAS  Google Scholar 

  • Srinivasamoorthy, K., Chidambaram, S., & Prasanna, M. V. (2008). Identification of major sources controlling groundwater chemistry from a hard rock terrain: a case study from Mettur taluk, Salem district, Tamilnadu, India. Journal Earth System Sciences, 117(1), 49–58. https://doi.org/10.1007/s12040-008-0012-3.

    Article  CAS  Google Scholar 

  • Sugimoto, Y., & Hirata, M. (2006). Nitrate concentration of groundwater and its association with livestock farming in Miyakonojo Basin, southern Kyushu, Japan. Grassland Science, 52(1), 29–36. https://doi.org/10.1111/j.1744-697X.2006.00044.x.

    Article  CAS  Google Scholar 

  • Taylor, R. G., et al. (2013). Ground water and climate change. Nature Climate Change, 3, 322–329. https://doi.org/10.1038/nclimate1744.

    Article  Google Scholar 

  • The Mathworks Incorporated. (2017). MatLab R2017a. Natick, MA, United States.

  • Umezawa, Y., Hosono, T., Onodera, S.-I., Siringan, F., Buapeng, S., Delinom, R., Yoshimizu, C., Tayasu, I., Nagata, T., & Taniguchi, M. (2008). Sources of nitrate and ammonium contamination in groundwater under developing Asian megacities. Science of the Total Environment, 404, 361–376. https://doi.org/10.1016/j.scitotenv.2008.04.021.

    Article  CAS  Google Scholar 

  • Vera, C., Silvestri, G., Liebmann, B., & Gonzalez, P. (2006). Climate change scenarios for seasonal precipitation in South America. Geophysical Research Letters, 33(13), L13707. https://doi.org/10.1029/2006GL025759.

    Article  Google Scholar 

  • Vicuna, S., Maurer, E. P., Joyce, B., Dracup, J. A., & Purkey, D. (2007). The sensitivity of California water resources to climate change scenarios. Journal of the American Water Resources Association, 43(2), 482–498. https://doi.org/10.1111/j.1752-1688.2007.00038.x.

    Article  Google Scholar 

  • Wakida, F. T., & Lerner, D. N. (2005). Non-agricultural sources of groundwater nitrate: a review and case study. Water Research, 39(1), 3–16. https://doi.org/10.1016/j.watres.2004.07.026.

    Article  CAS  Google Scholar 

  • Warner, N. R., Levy, J., Harpp, K., & Farrugia, F. (2008). Drinking water quality in Nepal’s Kathmandu Valley: a survey and assessment of selected controlling site characteristics. Hydrogeology Journal, 16, 321–334. https://doi.org/10.1007/s10040-007-0238-1.

    Article  CAS  Google Scholar 

  • WHO. World Health Organization. (2011). Guidelines for drinking-water quality. 4th ed., Geneva.

  • Winston, R. B. GW_Chart (version 1.29.0.0.). (2000). Program for creating specialized graphs used in groundwater studies. USGS. Available in: http://water.usgs.gov/nrp/gwsoftware/GW_Chart/GW_Chart.html. Access in: September 05, 2017.

  • Wray, R. A. L. (1997). A global review of solutional weathering forms on quartz sandstones. Earth-Science Reviews, 42, 137–160. https://doi.org/10.1016/S0012-8252(96)00056-6.

    Article  CAS  Google Scholar 

  • Zkeri, E., Aloupi, M., & Gaganis, P. (2018). Seasonal and spatial variation of arsenic in groundwater in a rhyolithic volcanic area of Lesvos Island, Greece. Environmental Monitoring and Assessment, 190, 44. https://doi.org/10.1007/s10661-017-6395-3.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors are grateful to the to the Geology Postgraduate Program of UFBA and the Nucleus of Watersheds of UESC for the technical and scientific support; to the hotels, bed and breakfast establishments and their respective owners for the welcome and access to wells; and, finally, the authors are grateful to the Associação de Condutores de Visitantes de Lençóis (ACVL) for the logistic support provided.

Funding

The authors are grateful to the Coordination for the Improvement of Higher Education Personnel (CAPES) for financing this research project;

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jonatas Batista Mattos.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mattos, J.B., Cruz, M.J.M., De Paula, F.C.F. et al. Natural and anthropic processes controlling groundwater hydrogeochemistry in a tourist destination in northeastern Brazil. Environ Monit Assess 190, 395 (2018). https://doi.org/10.1007/s10661-018-6765-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10661-018-6765-5

Keywords

Navigation