Advertisement

Fuzzy-based assessment of groundwater intrinsic vulnerability of a volcanic aquifer in the Chilean Andean Valley

  • Denisse J. Duhalde
  • José L. Arumí
  • Ricardo A. Oyarzún
  • Diego A. Rivera
Article
  • 85 Downloads

Abstract

A fuzzy logic approach has been proposed to face the uncertainty caused by sparse data in the assessment of the intrinsic vulnerability of a groundwater system with parametric methods in Las Trancas Valley, Andean Mountain, south-central Chile, a popular touristic place in Chile, but lacking of a centralized drinking and sewage water public systems; this situation is a potentially source of groundwater pollution. Based on DRASTIC, GOD, and EKv and the expert knowledge of the study area, the Mamdani fuzzy approach was generated and the spatial data were processed by ArcGIS. The groundwater system exhibited areas with high, medium, and low intrinsic vulnerability indices. The fuzzy approach results were compared with traditional methods results, which, in general, have shown a good spatial agreement even though significant changes were also identified in the spatial distribution of the indices. The Mamdani logic approach has shown to be a useful and practical tool to assess the intrinsic vulnerability of an aquifer under sparse data conditions.

Keywords

Aquifer vulnerability Data scarcity Fuzzy logic 

Notes

Funding information

The authors express their gratitude to Conicyt for the funding provided through the Conicyt/Fondap/15130015 and Fondecyt 1150587 grants.

Compliance with ethical standards

Conflicts of interest

The authors declare that they have no conflict of interest.

References

  1. Aller, L., Bennett, T., Lehr, J.H., Petty, R.J., & Hackett, G. (1987). DRASTIC standarized system for evaluating groundwater pollution potential using hydrogeologic settings. US EPA Report 600/2-87-035 US EPA, Ada, 622 pp.Google Scholar
  2. Arumí, J. L., Maureira, H., Souvignet, M., Pérez, C., Rivera, D., & Oyarzún, R. (2016). Where does the water go? Understanding geohydrological behaviour of Andean catchments in South-Central Chile. Hydrological Sciences Journal, 61(5), 844–855.  https://doi.org/10.1080/02626667.2014.934250.CrossRefGoogle Scholar
  3. Auge, M. (1995). Primer Curso de Posgrado de Hidrogeología Ambiental. Universidad de Buenos Aires, (unpublished). 65.Google Scholar
  4. Auge, M. (2004). Vulnerabildad de acuíferos. Revista Latino-Am Hidrogeologia, 4, 85–103.Google Scholar
  5. Bárdossy, A., & Duckstein, L. (1995). Fuzzy rule_based modeling with applications to geophysical, biological and engineering systems. Systems Engineering Series. Boca Raton: CRC Press.Google Scholar
  6. Bárdossy, A., Huberlandt, U., & Krysanova, V. (2003). Automatic fuzzy-rule assessment and its application to the modelling of nitrogen leaching for large regions. Soft Computing, 7(6), 370–385.CrossRefGoogle Scholar
  7. DGA. (1986). Mapa hidrogeológico de Chile. Direccion General de Aguas, Ministerio de Obras Públicas. Available on http://biblioteca.sernageomin.cl/opac/DataFiles/DGA054.pdf. Accessed Jan 2018.
  8. Dirección General de Aguas (DGA). (2016). Información Oficial Hidrometeorológica y de Calidad de Aguas en Línea. Aviable on: http://snia.dga.cl/BNAConsultas/reportes. Accessed Aug 2017.
  9. Dixon, B. (2004). Prediction of groundwater vulnerability using an integrated GIS-based neuro-fuzzy techniques. Journal of Spatial Hydrology, 4(2), 38.Google Scholar
  10. Dixon, B. (2005). Ground water vulnerability mapping: a GIS and fuzzy rule based integrated tool. Applied Geography, 25(4), 327–347.  https://doi.org/10.1016/j.apgeog.2005.07.002.CrossRefGoogle Scholar
  11. Dixon, H. J., Murphy, M. D., Sparks, S. J., Chávez, R., Naranjo, J. A., Dunkley, P. N., Young, S. R., Gilbert, J. S., & Pringle, M. R. (1999). The geology of Nevados de Chillán volcano, Chile. Revista Geologica de Chile, 26(2), 227–253.  https://doi.org/10.4067/S0716-02081999000200006.CrossRefGoogle Scholar
  12. Dixon, B., Scott, H. D., Dixon, J. C., & Steele, K. F. (2002). Prediction of aquifer vulnerability to pesticides using fuzzy rule-based models at the regional scale. Physical Geography, 23(2), 130–153.CrossRefGoogle Scholar
  13. Foster, S., & Hirata, R. (1987). Groundwater pollution risk evaluation: a survey manual using available data. CEPIS-PAHO/WHO, Lima, 89.Google Scholar
  14. Instituto Geográfico Militar (IGM). (2008). Nevados de Chillán. Segunda edición. Institituto Geográfico Militar, Santiago, Chile. F-112 pp. 1 map, scale 1:50.000.Google Scholar
  15. Instituto Geológico Minero de España (IGME). (2004). Protección de las aguas subterráneas frente a vertidos directos e indirectos. Ed. Fernández L, Fernández J, López J. IGME Madrid 13, 352. Aviable on: http://aguas.igme.es/igme/publica/lib120/pdf/Lib120/lib120.pdf.
  16. Instituto Nacional de Estadística (INE). (2015). Series Mensuales de turismo. Aviable on: http://www.ine.cl/canales/chile_estadistico/estadisticas_economicas/turismo/series_mensuales_2015.php.
  17. Lavados, A. (2015). Evaluación de la Interacción de Aguas Superficiales y Subterráneas en el Estero Renegado. Universidad de Concepción-Chile. Thesis to obtain bachelor’s degree in agricultural engineering. 60.Google Scholar
  18. Liggett, J., Lapcevic, P., & Miller, K. (2011). A guide to the use of intrinsic aquifer vulnerability mapping. Available at http://cvrd.bc.ca/DocumentCenter/Home/View/7838.
  19. Muhammetoglu, A., & Yardimci, A. (2006). A fuzzy logic approach to assess groundwater pollution levels below agricultural fields. Environmental Monitoring and Assessment, 118, 337–354.  https://doi.org/10.1007/s10661-006-1497-3.CrossRefGoogle Scholar
  20. Muñoz, E., Arumí, J. L., Wagener, T., Oyarzún, R., & Parra, V. (2016). Unraveling complex hydrogeological processes in Andean basins in south-central Chile: an integrated assessment to understand hydrological dissimilarity. Hydrological Processes, 30, 4934–4943.  https://doi.org/10.1002/hyp.11032.CrossRefGoogle Scholar
  21. Naranjo, J.A., Gilbert, J., & Sparks, R.S. (2008). Geología del complejo volcánico Nevados de Chillán, Región del Biobío. Servicio Nacional de Geología y Minería, Carta Geológica de Chile, Serie Geología Básica 114: 28 p., 1 map, scale 1:50.000.Google Scholar
  22. Navarro, M. (2016). Estudio de caso análisis edafogeoambiental de la zona de Las Trancas Chillan. Thesis to obtain bachelor’s degree in agricultural engineering, Universidad de Concepción. 35 pp.Google Scholar
  23. Nobre, R. C. M., Rotunno Filho, O. C., Mansur, W. J., Nobre, M. M. M., & Cosenza, C. A. N. (2007). Groundwater vulnerability and risk mapping using GIS, modeling and a fuzzy logic tool. Journal of Contaminant Hydrology, 94, 277–292.CrossRefGoogle Scholar
  24. Plummer, R., de Loë, R., & Armitage, D. (2012). A systematic review of water vulnerability assessment tools. Water Resources Management, 26(15), 4327–4346.CrossRefGoogle Scholar
  25. Prasad, R. K., Singh, V. S., Krishnamacharyulu, S. K. G., & Banerjee, P. (2011). Application of drastic model and GIS: for assessing vulnerability in hard rock granitic aquifer. Environmental Monitoring and Assessment, 176(1–4), 143–155.CrossRefGoogle Scholar
  26. Rivera, R. (2014). Geología, Geomorfología y Geopatrimonio en el Complejo Volcánico Nevados de Chillán, Región del Bio-Bío, Chile, Universidad de Concepción Chile. Thesis to obtain bachelor’s degree in geology. 226.Google Scholar
  27. The MathWorks, Inc. (2015). Fuzzy logic toolbox user’s guide. The MathWorks, Inc.Google Scholar
  28. Vrba, J., & Zaporozec, A. (1994). Guidebook on mapping groundwater vulnerability. IAH Int Contrib to Hydrogeol 16, Heise, Hannover, Germany, 131 pp.Google Scholar
  29. Zúñiga, R., Muñoz, E., & Arumí, J. L. (2012). Estudio de los procesos hidrológicos de la cuenca del Río Diguillín. Obras y Proyectos, 11, 69–78.CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Departamento Ingeniería de MinasUniversidad de La SerenaLa SerenaChile
  2. 2.Universidad de ConcepciónChillánChile
  3. 3.CEAZALa SerenaChile

Personalised recommendations