Skip to main content
Log in

GIS assessment of the risk of gene flow from Brassica napus to its wild relatives in China

  • Published:
Environmental Monitoring and Assessment Aims and scope Submit manuscript

Abstract

Risk of gene flow from canola (Brassica napus) to species of wild relatives was used as an example to evaluate the risk of gene flow of transgenic crops. B. juncea and B. rapa were the most common weedy Brassica species in China, which were both sexually compatible with canola. Data on canola cultivation in China were collected and analyzed using geographic information system (GIS), and the distribution of its wild relatives was predicted by MaxEnt species distribution model. Based on biological and phenological evidence, our results showed that gene flow risk exists in most parts of the country, especially in places with higher richness of wild Brassica species. However, risk in dominant canola cultivation regions is relatively low owing to the reduced distribution density of wild species in these regions. Three regions of higher risk of gene flow had been identified. Risk of gene flow is relatively high in certain areas. China has been assumed to be the original center of B. juncea and B. rapa, and gene flow may lead to negative effects on the conservation of biodiversity of local species. Strategies had been proposed to reduce the possibility of gene flow either by monitoring introgression from crops to wild relatives in the areas of high adoption of the crop or by taking measures to limit the releasing of new crops or varieties in the areas with abundant wild relatives.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Anderson, R. P., Lew, D., & Peterson, A. T. (2003). Evaluating predictive models of species’ distributions: Criteria for selecting optimal models. Ecological Modelling, 162, 211–232.

    Article  Google Scholar 

  • Bing, D. J., Downey, R. K., & Rakow, G. F. W. (1996). Hybridizations among Brassica napus, B. rapa and B. juncea and their two weedy relatives B. nigra and Sinapis arvensis under open pollination conditions in the field. Plant Breeding, 115, 470–473.

    Article  Google Scholar 

  • Cardoza, V., & Stewart Jr., C. N. (2007). Rapeseed biotechnology. Advances in Botanical Research, 45, 435–449.

    Article  CAS  Google Scholar 

  • Davenport, I. J., Wilkinson, M. J., Mason, D. C., Charters, Y. M., Jones, A. E., Allainguillaume, J., Butler, H. T., & Raybould, A. F. (2000). Quantifying gene movement from oilseed rape to its wild relatives using remote sensing. International Journal of Remote Sensing, 21, 3567–3573.

    Article  Google Scholar 

  • Eastham, K., & Sweet, J. (2002). Genetically modified organisms (GMOs): The significance of gene flow through pollen transfer. Denmark: European Environment Agency Copenhagen.

    Google Scholar 

  • Elith, J., Graham, C. H., Anderson, R. P., et al. (2006). Novel methods improve prediction of species’ distributions from occurrence data. Ecography, 29, 129–151.

    Article  Google Scholar 

  • Elith, J., & Leathwick, J. R. (2009). Species distribution models: Ecological explanation and prediction across space and time. Annual Review of Ecology, Evolution, and Systematics, 40, 677–697.

    Article  Google Scholar 

  • Ellstrand, N. C., Prentice, H. C., & Hancock, J. F. (1999). Gene flow and introgression from domesticated plants into their wild relatives. Annual Review of Ecology, Evolution, and Systematics, 30, 539–563.

    Article  Google Scholar 

  • Graham, M. H. (2003). Confronting multicollinearity in ecological multipie regression. Ecology, 84, 809–2815.

    Article  Google Scholar 

  • Guan, C. Y. (2005). Breeding of rapeseed by genetic transformation. Chinese Journal of Oilseed Crop Sciences, 27, 97–103 (in Chinese with English Abstract).

    Google Scholar 

  • Gulden, R. H., Shirtliffe, S. J., & Thomas, A. G. (2003). Harvest losses of canola (Brassica napus) cause large seedbank inputs. Weed Science, 51, 83–86.

    Article  CAS  Google Scholar 

  • Hüsken, A., & Dietz-Pfeilstetter, A. (2007). Pollen-mediated intraspecific gene flow from herbicide resistant oilseed rape (Brassica napus L.). Transgenic Research, 16, 557–569.

    Article  CAS  Google Scholar 

  • Hauser, T. P., & Shaw, R. G. (1998). Fitness of F1 hybrids between weedy Brassica rapa and oilseed rape (B. napus). Heredity, 81, 429–435.

    Article  Google Scholar 

  • Huangfu, C. H., Song, X. L., Qiang, S., & Zhang, H. J. (2007). Response of wild Brassica juncea populations to glyphosate. Pest Management Science, 63, 1133–1140.

    Article  CAS  Google Scholar 

  • Jørgensen, R., Andersen, B., Hauser, T. P., Landbo, L., Mikkelsen, T. R., & Østergård, H. (1998). Introgression of crop genes from oilseed rape (Brassica napus) to related wild species—an avenue for the escape of engineered genes. Acta Horticulturae, (459), 211–217.

  • Jørgensen, R. B., Ammitzbøll, H., Hansen, L. B., Johannessen, M., Andersen, B., & Hauser, T. P. (2004). Gene introgression and consequences in Brassica. In H. C. M. D. Nijs, D. Bartsch, & J. Sweet (Eds.), Introgression from genetically modified plants into wild relatives (pp. 253–262). Cambridge: CABI Publishing.

    Chapter  Google Scholar 

  • James, C. (2016). Global status of commercialized biotech/GM crops: 2016. ISAAA Brief No. 52. Ithaca, NY: ISAAA.

  • Kerlan, M. C., Chèvre, A. M., Eber, F., Baranger, A., & Renard, M. (1992). Risk assessment of outcrossing of transgenic rapessed to related species. Euphytica, 62, 145–153.

    Article  Google Scholar 

  • Li, X., Pan, L. W., Li, J. Y., Lü, R., Zhang, S. Y., Liu, Y. M., & Gao, Q. (2011). Identification of imported genetically modified rapeseeds. Chinese Journal of Oilseed Crop Sciences, 33, 77–82 (in Chinese with English Abstract).

    CAS  Google Scholar 

  • Liu, Y. B., Darmency, H., Stewart Jr., C. N., Wei, W., Tang, Z. X., & Ma, K. P. (2015). The effect of Bt-transgene introgression on plant growth and reproduction in wild Brassica juncea. Transgenic Research, 24, 537–547.

    Article  CAS  Google Scholar 

  • Liu, Y. B., Wei, W., Ma, K. P., Li, J. S., Liang, Y. Y., & Darmency, H. (2013). Consequences of gene flow between oilseed rape (Brassica napus) and its relatives. Plant Science, 211, 42–51.

    Article  CAS  Google Scholar 

  • Metz, P. L. J., Jacobsen, E., Nap, J. P., Pereira, A., & Stiekema, W. J. (1997). The impact on biosafety of the phosphinothricin-tolerance transgene in inter-specific B. rapa × B. napus hybrids and their successive backcrosses. Theoretical and Applied Genetics, 95, 442–450.

    Article  CAS  Google Scholar 

  • Pearson, R. G., Raxworthy, C. J., Nakamura, M., & Peterson, T. A. (2007). Predicting species distributions from small numbers of occurrence records: A test case using cryptic geckos in Madagascar. Journal of Biogeography, 34, 102–117.

    Article  Google Scholar 

  • Pekrun, C., Hewitt, J. D. J., & Lutman, P. J. W. (1998). Cultural control of volunteer oilseed rape (Brassica napus). Journal of Agricultural Science, 130, 155–163.

    Article  Google Scholar 

  • Phillips, S. J., Anderson, R. P., & Schapire, R. E. (2006). Maximum entropy modeling of species geographic distributions. Ecological Modelling, 190, 231–259.

    Article  Google Scholar 

  • Raymer, P. L. (2002). Canola: An emerging oilseed crop. In J. Janick & A. Whipkey (Eds.), Trends in new crops and new uses: Strength in diversity (pp. 122–126). Alexandria, VA: ASHS Press.

    Google Scholar 

  • Reddy, S., & Dávalos, L. M. (2003). Geographical sampling bias and its implications for conservation priorities in Africa. Journal of Biogeography, 30, 1719–1727.

    Article  Google Scholar 

  • Schafer, M. G., Ross, A. A., Londo, J. P., Burdick, C. A., Lee, E. H., Travers, S. E., van de Water, P. K., & Sagers, C. L. (2011). The establishment of genetically engineered canola populations in the U.S. PLoS One, 6, e25736.

    Article  CAS  Google Scholar 

  • Scheffler, J. A., & Dale, P. J. (1994). Opportunities for gene transfer from transgenic oilseed rape (Brassica napus) to related species. Transgenic Research, 3, 263–278.

    Article  CAS  Google Scholar 

  • Snow, A. A., Andersen, B., & Jørgensen, R. B. (1999). Costs of transgenic herbicide resistance introgressed from Brassica napus into weedy B. rapa. Molecular Ecology, 8, 605–615.

    Article  Google Scholar 

  • U. N. (1935). Genimic analysis in Brassica with special reference to the experimental formation of B. napus and peculiar mode of fertilization. Journal of Japanese Botany, 7, 389–452.

    Google Scholar 

  • Wang, J. L., Luan, Y. F., Daci, Z. G., & Chang, T. J. (2006). Geographical distribution and biological characters of wild rapeseed in Tibet. Chinese Journal of Oilseed Crop Sciences, 28, 134–137 (in Chinese with English Abstract).

    Google Scholar 

  • Warwick, S. I., Légère, A., Simard, M. J., & James, T. (2008). Do escaped transgenes persist in nature? The case of an herbicide resistance transgene in a weedy Brassica rapa population. Molecular Ecology, 17, 1387–1395.

    Article  CAS  Google Scholar 

  • Zhang, M. G., Zhou, Z. K., Chen, W. Y., Cannon, C. H., Raes, N., & Slik, J. (2013). Major declines of woody plant species ranges under climate change in Yunnan, China. Diversity and Distribution, 20, 405–415.

    Article  CAS  Google Scholar 

  • Zhu, Y. M., Li, Y. D., Colbach, N., Ma, K. P., Wei, W., & Mi, X. C. (2012). Seed losses at harvest and seed persistence of oilseed rape (Brassica napus) in different cultural conditions in Chinese farming systems. Weed Research, 52, 317–326.

    Article  Google Scholar 

Download references

Acknowledgements

This work was funded by a National Natural Science Foundation of China (NSFC) grant (31370357) and a Commonweal Scientific Programme of the Ministry of Environmental Protection of China (201109028).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wei Wei.

Electronic supplementary material

1. Published research literatures for wild Brassica species distribution data collection.

2. National and local floras for wild Brassica species distribution data collection.

3. Globcover 2009 Legend and Brassica habitat discrimination.

ESM 1

(PDF 67 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dong, Jj., Zhang, Mg., Wei, W. et al. GIS assessment of the risk of gene flow from Brassica napus to its wild relatives in China. Environ Monit Assess 190, 405 (2018). https://doi.org/10.1007/s10661-018-6753-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10661-018-6753-9

Keywords

Navigation