Skip to main content

Advertisement

Log in

Monitoring tidal flat dynamics affected by human activities along an eroded coast in the Yellow River Delta, China

  • Published:
Environmental Monitoring and Assessment Aims and scope Submit manuscript

Abstract

The coast of the northern Yellow River Delta (YRD) has experienced significant erosion since 1976 due to avulsion and consequent lack of sediment supply. Moreover, massive reclamation activity, expansion of the oil industry, and sea-level rise have jointly contributed to the rapid change of tidal flats over recent decades. Therefore, accurate reporting of the coast spatial extent and stability status is urgently required. We presented a method using remotely sensed waterlines to map tidal flats and monitor their spatiotemporal dynamics. The empirical results show that the area of the intertidal zone west of Tiao River Mouth (TRM) appeared to be decreasing. Despite intense hydrodynamic force, the intertidal zone to the east of TRM has expanded due to law prohibiting land reclamation in nature reserve. However, this trend weakened due to the expansion of oil industry after 2007. The movement of the mean high-tide line is the main cause for the increase–decrease patterns of the intertidal zone area. To achieve and maintain land equilibrium in this area, we suggest that a 554-m buffer must be preserved for mean high-tide line retreat. Unfortunately, the shrink crisis of the tidal flats has been extremely severe. Future reclamation and oil projects must be supplemented by studies that evaluate the complexities and dynamics of tidal flats so as to prevent the loss of this unique ecosystem.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  • Airoldi, L., & Beck, M. W. (2007). Loss, status and trends for coastal marine habitat of Europe. Oceanography & Marine Biology, 45, 345–405.

    Google Scholar 

  • Allard, M., & Michaud, Y. (1998). Sedimentology and evolution of subarctic tidal flats along a rapidly emerging coast, eastern Hudson Bay, Canada. Journal of Coastal Research, 14(4), 1242–1254.

    Google Scholar 

  • Barbier, E. B., Koch, E. W., Silliman, B. R., Hacker, S. D., Wolanski, E., Primavera, J., Granek, E. F., Polasky, S., Aswani, S., Cramer, L. A., Stoms, D. M., Kennedy, C. J., Bael, D., Kappel, C. V., Perillo, G. M. E., & Reed, D. J. (2008). Coastal ecosystem-based management with nonlinear ecological functions and values. Science, 319(5861), 321–323.

    Article  CAS  Google Scholar 

  • Bi, X., Wang, B., & Lu, Q. (2011). Fragmentation effects of oil wells and roads on the Yellow River delta, North China. Ocean & Coastal Management, 54(3), 256–264.

    Article  Google Scholar 

  • Bi, N. S., Wang, H. J., & Yang, Z. S. (2014). Recent changes in the erosion–accretion patterns of the active Huanghe (Yellow River) delta lobe caused by human activities. Continental Shelf Research, 90, 70–78.

    Article  Google Scholar 

  • Boak, E. H., & Turner, I. L. (2005). Shoreline definition and detection: a review. Journal of Coastal Research, 21(4), 688–703.

    Article  Google Scholar 

  • Card, D. H. (1982). Using known map category marginal frequencies to improve estimates of thematic map accuracy. Photogrammetric Engineering & Remote Sensing, 48(3), 431–439.

    Google Scholar 

  • Chen, S. L., Zhang, G. A., & Chen, X. Y. (2006). Coastal erosion feature and mechanism at Feiyantan in the Yellow River delta. Marine Science Bulletin, 8(1), 11–20.

    Google Scholar 

  • Chen, J., Wang, S. Y., & Mao, Z. P. (2011). Monitoring wetland changes in Yellow River delta by remote sensing during 1976–2008. Progress in Geography, 30(5), 585–592 (in Chinese).

    CAS  Google Scholar 

  • Cui, B. L., & Li, X. Y. (2011). Coastline change of the Yellow River estuary and its response to the 638 sediment and runoff (1976–2005). Geomorphology, 127(1–2), 32–40.

    Article  Google Scholar 

  • Cui, B., Yang, Q., Yang, Z., & Zhang, K. (2009). Evaluating the ecological performance of wetland restoration in the Yellow River Delta, China. Ecological Engineering, 35(7), 1090–1103.

    Article  Google Scholar 

  • Erlandson, M. V. (2012). As the world warms: Rising seas, coastal archaeology, and the erosion of maritime history. Journal of Coastal Conservation, 16(2), 137–142.

    Article  Google Scholar 

  • Fan, H., & Huang, H. (2004). Spatial-temporal changes of tidal flats in the Huanghe River delta using Landsat TM/ETM+ images. Journal of Geographical Sciences, 14(3), 366–374.

    Article  Google Scholar 

  • Fan, Y. S., Chen, S. L., Zhao, B., Pan, S. Q., Jiang, C., & Ji, H. Y. (2018). Shoreline dynamics of the active Yellow River delta since the implementation of water-sediment regulation scheme: A remote-sensing and statistics-based approach. Estuarine Coastal and Shelf Science., 200, 406–419.

    Article  Google Scholar 

  • Fang, H., & Xu, J. (2000). Land cover and vegetation change in the Yellow River Delta nature reserve analyzed with Landsat Thematic Mapper data. Geocarto International, 15(4), 43–50.

    Article  Google Scholar 

  • Foody, G. M. (2009). Sample size determination for imagery classification accuracy assessment and comparison. International Journal of Remote Sensing, 30(20), 5273–5291.

    Article  Google Scholar 

  • Geleynse, N., Voller, V. R., Paola, C., & Ganti, V. (2012). Characterization of river delta shorelines. Geophysical Research Letters, 39(17), L17402.

    Article  Google Scholar 

  • Hu, C. H., Ji, Z. W., & Wang, T. (1996). Characteristics of ocean dynamics and sediment diffusion in the Yellow River estuary. Journal of Sediment Research, 4, 1–10 (In Chinese).

    Google Scholar 

  • Huang, L., Bai, J., Chen, B., Zhang, K., Huang, C., & Liu, P. (2012). Two-decade wetland cultivation and its effects on soil properties in salt marshes in the Yellow River delta. China Ecological Informatics, 10(7), 49–55.

    Article  Google Scholar 

  • Jenks, G. F., 1967. The data model concept in statistical mapping. International Yearbook of Cartography.

  • Jia, Y. G., Zheng, J. W., Yue, Z. Q., Liu, X. L., & Shan, H. X. (2014). Tidal flat erosion of the Huanghe River Delta due to local changes in hydrodynamic conditions. Acta Oceanologica Sinica, 168(7), 116–124.

    Article  Google Scholar 

  • Jiang, C., Pan, S. Q., & Chen, S. L. (2017). Recent morphological changes of the Yellow River (Huanghe) submerged delta: Causes and environmental implications. Geomorphology, 293, 93–107.

    Article  Google Scholar 

  • Jiménez, J., Sánchez-Arcilla, A., Valdemoro, H. I., Gracia, V., & Nieto, F. (1997). Processes reshaping the Ebro delta. Marine Geology, 144(1–3), 59–79.

    Article  Google Scholar 

  • Jin, Y., Yang, W., Sun, T., Yang, Z., & Li, M. (2016). Effects of seashore reclamation activities on the health of wetland ecosystems: A case study in the Yellow River delta, China. Ocean & Coastal Management, 123, 44–52.

    Article  Google Scholar 

  • Kirwan, M. L., & Megonigal, J. P. (2013). Tidal wetland stability in the face of human impacts and sea-level rise. Nature, 504(7478), 53–60.

    Article  CAS  Google Scholar 

  • Kuenzer, C., Ottinger, M., Liu, G. H., Sun, B., Baumhauer, R., & Dech, S. (2014). Earth observation-691 based coastal zone monitoring of the Yellow River delta: Dynamics in China’s second largest 692 oil producing region observed over four decades. Applied Geography, 55, 92–107.

    Article  Google Scholar 

  • Kuleli, T. (2010). Quantitative analysis of shoreline changes at the Mediterranean coast in Turkey. Environmental Monitoring & Assessment, 167(1–4), 387–397.

    Article  Google Scholar 

  • Lee, Y. K., Ryu, J. H., Choi, J. K., Soh, J. G., Eom, J. A., & Won, J. S. (2011). A study of decadal sedimentation trend changes by waterline comparisons within the Ganghwa tidal flats initiated by human activities. Journal of Coastal Research, 27(5), 857–869.

    Article  Google Scholar 

  • Li, W. Y., & Gong, P. (2016). Continuous monitoring of coastline dynamics in western Florida with a 30-year time series of Landsat imagery. Remote Sensing of Environment, 179, 196–209.

    Article  Google Scholar 

  • Li, G., Zhuang, K., & Wei, H. (2000). Sedimentation in the Yellow River delta. Part III: Seabed erosion and diapirism in the abandoned subaqueous delta lobe. Marine Geology, 168(1), 129–144.

    Article  Google Scholar 

  • Liu, Y., Li, M., Mao, L., Cheng, L., & Chen, K. (2013). Seasonal pattern of tidal-flat topography along the Jiangsu Middle Coast, China, using HJ-1 optical images. Wetlands, 33(5), 871–886.

    Article  Google Scholar 

  • Liu, F., Yuan, L. R., Yang, Q. S., Ou, S. Y., Xie, L. L., & Cui, X. (2014). Hydrological responses to the combined influence of diverse human activities in the Pearl River delta. China Catena, 113, 41–55.

    Article  Google Scholar 

  • Liu, X., Gao, Z., Ning, J., Yu, X., & Zhang, Y. (2016). An improved method for mapping tidal flats based on remote sensing waterlines: a case study in the Bohai Rim, China. IEEE Journal of Selected Topics in Applied Earth Observations & Remote Sensing, 9(11), 5123–5129.

    Article  Google Scholar 

  • Liu, F., Chen, H., Cai, H. Y., Luo, X. X., Ou, S. Y., & Yang, Q. S. (2017). Impacts of ENSO on multiscale variations in sediment discharge from the Pearl River to the South China Sea. Geomorphology, 292, 24–36.

    Article  Google Scholar 

  • Lotze, H. K., & Jackson, J. B. C. (2006). Depletion, degradation, and recovery potential of estuaries and coastal seas. Science, 312(5781), 1806–1809.

    Article  CAS  Google Scholar 

  • Ma, Z., Melville, D. S., Liu, J., Chen, Y., Yang, H., Ren, W., Zhang, Z., Piersma, T., & Li, B. (2014). Rethinking China’s new great wall. Science, 346(6212), 912–914.

    Article  CAS  Google Scholar 

  • Mariotti, G., & Fagherazzi, S. (2010). A numerical model for the coupled long-term evolution of salt marshes and tidal flats. Journal of Geophysical Research: Atmospheres, 115(115), 195–205.

    Google Scholar 

  • Masek, J. G., Vermote, E. F., Saleous, N. E., Wolfe, R., Hall, F. G., Huemmrich, K. F., Gao, F., Kutler, J., & Lim, T. (2006). A Landsat surface reflectance dataset for North America, 1990-2000. IEEE Geoscience & Remote Sensing Letters, 3(1), 68–72.

    Article  Google Scholar 

  • Mason, D., Davenport, I., Robinson, G., Flather, R., & McCartney, B. (1995). Construction of an inter-tidal digital elevation model by the ‘water-line’ method. Geophysical Research Letters, 22(23), 3187–3190.

    Article  Google Scholar 

  • Mcfeeters, S. K. (1996). The use of the Normalized Difference Water Index (NDWI) in the delineation of open water features. International Journal of Remote Sensing, 17(7), 1425–1432.

    Article  Google Scholar 

  • Murray, N. J., Phinn, S. R., Clemens, R. S., Roelfsema, C. M., & Fuller, R. A. (2012). Continental scale mapping of tidal flats across East Asia using the Landsat archive. Remote Sensing, 4(11), 3417–3426.

    Article  Google Scholar 

  • Nicholls, R. J., & Cazenave, A. (2010). Sea-level rise and its impact on coastal zones. Science, 328, 1517–1520.

    Article  CAS  Google Scholar 

  • Otsu, N. (1979). A threshold selection method from gray-level histograms. IEEE Transactions on Systems, Man and Cybernetics, 9, 62–66.

    Article  Google Scholar 

  • Ryu, J. H., Kim, C. H., Lee, Y. K., Won, J. S., Chun, S. S., & Lee, S. (2008). Detecting the intertidal morphologic change using satellite data. Estuarine Coastal & Shelf Science, 78(4), 623–632.

    Article  Google Scholar 

  • Ryu, J. H., Choi, J. K., & Lee, Y. K. (2014). Potential of remote sensing in management of tidal flats: A case study of thematic mapping in the Korean tidal flats. Ocean & Coastal Management, 102, 458–470.

    Article  Google Scholar 

  • Sunder, S., Ramsankaran, R., & Ramakrishnan, B. (2017). Inter-comparison of remote sensing sensing-based shoreline mapping techniques at different coastal stretches of India. Environmental Monitoring & Assessment, 189(6), 290.

    Article  Google Scholar 

  • Syvitski, J. P. M., Kettner, A. J., Overeem, I., Hutton, E. W. H., Hannon, M. T., Brakenridge, G. R., Day, J., Vörösmarty, C., Saito, Y., Giosan, L., & Nicholls, R. J. (2009). Sinking deltas due to human activities. Nature Geoscience, 2(10), 681–686.

    Article  CAS  Google Scholar 

  • Vermote, E. F., El Saleous, N., Justice, C. O., Kaufman, Y. J., Privette, J. L., Remer, L., Roger, J. C., & Tanré, D. (1997). Atmospheric correction of visible to middle‐infrared EOS‐MODIS data over land surfaces: Background, operational algorithm and validation. Journal of Geophysical Research Atmospheres, 102(D14), 17131–17141.

    Article  Google Scholar 

  • Wang, H. J., Yang, Z. S., Li, G. X., & Jiang, W. S. (2006). Wave climate modeling on the abandoned Huanghe (Yellow River) delta lobe and related deltaic erosion. Journal of Coastal Research, 22(4), 906–918.

    Article  Google Scholar 

  • Wang, H. J., Bi, N. S., Saito, Y., Wang, Y., Sun, X., Zhang, J., & Yang, Z. (2010). Recent changes in sediment delivery by the Huanghe (Yellow River) to the sea: Causes and environmental implications in its estuary. Journal of Hydrology, 391(3–4), 302–313.

    Article  Google Scholar 

  • Wang, M., Qi, S., & Zhang, X. (2012). Wetland loss and degradation in the Yellow River delta, Shandong Province of China. Environmental Earth Sciences, 67(1), 185–188.

    Article  Google Scholar 

  • Wang, Z. B., Maren, D. S. V., Ding, P. X., Yang, S. L., Prooijen, B. C. V., Vet, P. L. M. D., et al. (2015). Human impacts on morphodynamic thresholds in estuarine systems. Continental Shelf Research, 111, 174–183.

    Article  Google Scholar 

  • Wells, J. T. Jr., A, C. E., Park, Y. A., & Frankenberg, E. W. (1990). Morphology, sedimentology and tidal channel processes on a high-tide-range mudflat, west coast of South Korea. Marine Geology, 95(2), 111–130.

    Article  Google Scholar 

  • Werf, J. V. D., Reinders, J., Rooijen, A. V., Holzhauer, H., & Ysebaert, T. (2015). Evaluation of a tidal flat sediment nourishment as estuarine management measure. Ocean & Coastal Management, 114, 77–87.

    Article  Google Scholar 

  • Xu, J. (2000). Land cover and vegetation change in the Yellow River delta nature reserve analyzed with Landsat Thematic Mapper data. Geocarto International, 15(4), 43–50.

    Article  Google Scholar 

  • Xu, Z., Kim, D. J., Kim, S. H., Cho, Y. K., & Lee, S. G. (2016). Estimation of seasonal topographic variation in tidal flats using waterline method: A case study in Gomso and Hampyeong Bay, South Korea. Estuarine Coastal & Shelf Science, 183, 213–220.

    Article  Google Scholar 

  • Yang, S. L., Ding, P. X., & Chen, S. L. (2001). Changes in progradation rate of the tidal flats at the mouth of the Changjiang (Yangtze) river. China Geomorphology, 38(1–2), 167–180.

    Article  Google Scholar 

  • Yao, R. J., Yang, J. S., & Yang, J. S. (2010). Quantitative evaluation of soil salinity and its spatial distribution using electromagnetic induction method. Agricultural Water Management, 97(12), 1961–1970.

    Article  Google Scholar 

  • Zhang, Y. (2011). Coastal environmental monitoring using remotely sensed data and GIS techniques in the modern Yellow River delta, China. Environmental Monitoring & Assessment, 179(1–4), 15–29.

    Article  Google Scholar 

  • Zhang, K., Douglas, B. C., & Leatherman, S. P. (2004). Global warming and coastal erosion. Climatic Change, 64(1–2), 41–58.

    Article  Google Scholar 

  • Zhang, T. T., Zeng, S. L., Gao, Y., Ouyang, Z. T., Li, B., Fang, C. M., & Zhao, B. (2011). Assessing impact of land uses on land salinization in the Yellow River delta, China using an integrated and spatial statistical model. Land Use Policy, 28(4), 857–866.

    Article  Google Scholar 

  • Zhang, X., Zhang, Y., Ji, Y., Zhang, Y., & Yang, Z. (2016). Shoreline change of the northern Yellow River (Huanghe) delta after the latest deltaic course shift in 1976 and its influence factors. Journal of Coastal Research, 74(74), 48–58.

    Article  Google Scholar 

Download references

Acknowledgements

This study was financially supported by the National Key Research and Development Program of China (No. 2017YFC0405503) and the National Natural Science Foundation of China (No. U1706214). We would like to thank USGS for providing Landsat image. We also appreciate Jin Hu for his assistance in on-site investigation and writing assistance.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shenliang Chen.

Additional information

Highlights

• This is the first study on tidal flats mapping along the eroded coast of the Yellow River Delta ever performed.

• The extent of changes in tidal flats due to human activities were monitored and examined.

• The mean high-tide line movement is the main determinant of tidal flats dynamics.

• Future research will build from this study by addressing the natural complexity of tidal flat systems.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fan, Y., Chen, S., Zhao, B. et al. Monitoring tidal flat dynamics affected by human activities along an eroded coast in the Yellow River Delta, China. Environ Monit Assess 190, 396 (2018). https://doi.org/10.1007/s10661-018-6747-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10661-018-6747-7

Keywords

Navigation