Skip to main content
Log in

Screening and quantification of emerging contaminants in Periyar River, Kerala (India) by using high-resolution mass spectrometry (LC-Q-ToF-MS)

  • Published:
Environmental Monitoring and Assessment Aims and scope Submit manuscript

Abstract

The presence of emerging contaminants (ECs) in different aquatic systems may contribute to hazardous effects on aquatic organisms and subsequently on human health. In the present work, liquid chromatography coupled to a quadrupole time of flight mass spectrometer (LC-Q-ToF-MS) was used to identify and quantify a series of ECs in Periyar River in Aluva region, Kerala, India. The water samples were pre concentrated using solid-phase extraction (SPE) prior to analysis. The compounds were probed in both positive and negative ionization mode using electro spray ionization (ESI). Method validations were performed for linearity, limit of detection (LOD), limit of quantification (LOQ), accuracy, and precision (intraday and inter day). The ECs were quantified using standard calibration curve. The identified nine ECs include pharmaceuticals, personal care products, steroids, surfactants, and phthalate. A relatively high concentration was observed in the case of 2-dodecyl benzene sulfonic acid (1012 ng/l) and low concentration was observed for lignocaine (4.3 ng/l; since this is below LOQ, the value is only approximate). In addition, we have identified another 28 organic compounds using the technique of non-target analysis out of which seven compounds fall in the category of surfactants. Being the first report on ECs in Periyar River, the data is very important as this river is one of the biggest and important rivers of Kerala having several purification units for drinking water in the province.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Abramović, B. F., Banić, N. D., & Šojić, D. V. (2010). Degradation of thiacloprid in aqueous solution by UV and UV/H2O2 treatments. Chemosphere, 81, 114–119.

    Article  CAS  Google Scholar 

  • Al-Odaini, N. A., et al. (2010). Multi-residue analytical method for human pharmaceuticals and synthetic hormones in river water and sewage effluents by solid-phase extraction and liquid chromatography–tandem mass spectrometry. Journal of Chromatography A., 1217, 6791–6806.

    Article  CAS  Google Scholar 

  • Andrási, N., Molnár, B., Dobos, B., Vasanits-Zsigrai, A., Záray, G., & Molnár-Perl, I. (2013). Determination of steroids in the dissolved and in the suspended phases of wastewater and Danube River samples by gas chromatography, tandem mass spectrometry. Talanta, 115, 367–373.

    Article  CAS  Google Scholar 

  • Birkholz, D. A., et al., 2.11—Analysis of emerging contaminants in drinking water—a review A2—Ahuja, Satinder. Comprehensive water quality and purification. Elsevier, Waltham, 2014, pp. 212–229.

  • Bueno, M. J. M., Agüera, A., Hernando, M. D., Gómez, M. J., & Fernández-Alba, A. R. (2009). Evaluation of various liquid chromatography-quadrupole-linear ion trap-mass spectrometry operation modes applied to the analysis of organic pollutants in wastewaters. Journal of Chromatography A., 1216, 5995–6002.

    Article  CAS  Google Scholar 

  • Camacho-Muñoz, D., Martín, J., Santos, J. L., Aparicio, I., Alonso, E. (2014). Occurrence of surfactants in wastewater: Hourly and seasonal variations in urban and industrial wastewaters from Seville (Southern Spain). Science of The Total Environment, 468-469, 977-984.

  • Central Pollution Control Board (1993). http://www.hppcb.gov.in/eiasorang/spec.pdf. Accessed 3 April 2013.

  • Chiesa, L. M., Nobile, M., Biolatti, B., Pavlovic, R., Panseri, S., Cannizzo, F. T., & Arioli, F. (2016). Detection of selected corticosteroids and anabolic steroids in calf milk replacers by liquid chromatography–electrospray ionisation—tandem mass spectrometry. Food Control, 61, 196–203.

    Article  CAS  Google Scholar 

  • Clara, M., Strenn, B., & Kreuzinger, N. (2004). Carbamazepine as a possible anthropogenic marker in the aquatic environment: investigations on the behaviour of carbamazepine in wastewater treatment and during groundwater infiltration. Water Research, 38, 947–954.

    Article  CAS  Google Scholar 

  • Dell’Arciprete, M. L., Cobos, C. J., Furlong, J. P., Mártire, D. O., & Gonzalez, M. C. (2007). Reactions of sulphate radicals with substituted pyridines: a structure–reactivity correlation analysis. Chemphyschem, 8, 2498–2505.

    Article  CAS  Google Scholar 

  • Dirtu, A., et al. (2012). Analytical methods for selected emerging contaminants in human matrices—a review. Analytical and Bioanalytical Chemistry., 404, 2555–2581.

    Article  CAS  Google Scholar 

  • Gao, D.-W., Li, Z., Guan, J. X., & Liang, H. (2017). Seasonal changes and spatial distributions of nonylphenol ethoxylates in sewage treatment plant with BAF process. Environmental Technology., 38, 406–412.

    Article  CAS  Google Scholar 

  • Gómez, M. J., Gómez-Ramos, M. M., Malato, O., Mezcua, M., & Férnandez-Alba, A. R. (2010). Rapid automated screening, identification and quantification of organic micro-contaminants and their main transformation products in wastewater and river waters using liquid chromatography–quadrupole-time-of-flight mass spectrometry with an accurate-mass database. Journal of Chromatography A., 1217, 7038–7054.

    Article  CAS  Google Scholar 

  • Haman, C., Dauchy, X., Rosin, C., & Munoz, J. F. (2015). Occurrence, fate and behavior of parabens in aquatic environments: a review. Water Research, 68, 1–11.

    Article  CAS  Google Scholar 

  • Han, C., Xia, B., Chen, X., Shen, J., Miao, Q., & Shen, Y. (2016). Determination of four paraben-type preservatives and three benzophenone-type ultraviolet light filters in seafoods by LC-QqLIT-MS/MS. Food Chemistry., 194, 1199–1207.

    Article  CAS  Google Scholar 

  • Hernández, F., Sancho, J. V., Ibáñez, M., Abad, E., Portolés, T., & Mattioli, L. (2012). Current use of high-resolution mass spectrometry in the environmental sciences. Analytical and Bioanalytical Chemistry., 403, 1251–1264.

    Article  CAS  Google Scholar 

  • Herrera Rivera, Z., Oosterink, E., Rietveld, L., Schoutsen, F., & Stolker, L. (2011). Influence of natural organic matter on the screening of pharmaceuticals in water by using liquid chromatography with full scan mass spectrometry. Analytica Chimica Acta, 700, 114–125.

    Article  CAS  Google Scholar 

  • Jeon, H.-K., Chung, Y., & Ryu, J. C. (2006). Simultaneous determination of benzophenone-type UV filters in water and soil by gas chromatography–mass spectrometry. Journal of Chromatography A., 1131, 192–202.

    Article  CAS  Google Scholar 

  • Kalsoom, U., et al. (2012). Degradation and kinetics of H2O2 assisted photochemical oxidation of Remazol Turquoise Blue. Chemical Engineering Journal., 200–202, 373–379.

    Article  CAS  Google Scholar 

  • Kelly, C. (2000). Analysis of steroids in environmental water samples using solid-phase extraction and ion-trap gas chromatography–mass spectrometry and gas chromatography–tandem mass spectrometry. Journal of Chromatography A., 872, 309–314.

    Article  CAS  Google Scholar 

  • Kolpin, D. W., Furlong, E. T., Meyer, M. T., Thurman, E. M., Zaugg, S. D., Barber, L. B., & Buxton, H. T. (2002). Pharmaceuticals, hormones, and other organic wastewater contaminants in US streams, 1999−2000: a national reconnaissance. Environmental Science & Technology., 36, 1202–1211.

    Article  CAS  Google Scholar 

  • Kosma, C. I., et al. (2014). Investigation of PPCPs in wastewater treatment plants in Greece: occurrence, removal and environmental risk assessment. Science of The Total Environment., 466–467, 421–438.

    Article  CAS  Google Scholar 

  • Larsen, T. A., Lienert, J., Joss, A., & Siegrist, H. (2004). How to avoid pharmaceuticals in the aquatic environment. Journal of Biotechnology., 113, 295–304.

    Article  CAS  Google Scholar 

  • Li, W. C. (2014). Occurrence, sources, and fate of pharmaceuticals in aquatic environment and soil. Environmental Pollution., 187, 193–201.

    Article  CAS  Google Scholar 

  • Lima Gomes, P. C. F., Barnes, B. B., Santos-Neto, Á. J., Lancas, F. M., & Snow, N. H. (2013). Determination of steroids, caffeine and methylparaben in water using solid phase microextraction-comprehensive two dimensional gas chromatography–time of flight mass spectrometry. Journal of Chromatography A., 1299, 126–130.

    Article  CAS  Google Scholar 

  • Lin, Y., et al., (2016) Simultaneous qualitative and quantitative analysis of fluoroalkyl sulfonates in riverine water by liquid chromatography coupled with Orbitrap high resolution mass spectrometry. Journal of Chromatography A.

  • Liu, S., Ying, G. G., Zhao, J. L., Chen, F., Yang, B., Zhou, L. J., & Lai, H. J. (2011). Trace analysis of 28 steroids in surface water, wastewater and sludge samples by rapid resolution liquid chromatography–electrospray ionization tandem mass spectrometry. Journal of Chromatography A., 1218, 1367–1378.

    Article  CAS  Google Scholar 

  • López-Serna, R., Petrović, M., & Barceló, D. (2012). Direct analysis of pharmaceuticals, their metabolites and transformation products in environmental waters using on-line TurboFlow™ chromatography–liquid chromatography–tandem mass spectrometry. Journal of Chromatography A., 1252, 115–129.

    Article  CAS  Google Scholar 

  • Martinez, J. L. (2009). The role of natural environments in the evolution of resistance traits in pathogenic bacteria. Proceedings of the Royal Society of London B: Biological Sciences., 276, 2521–2530.

    Article  Google Scholar 

  • Maruthamuthu, P., & Neta, P. (1977). Reactions of phosphate radicals with organic compounds. The Journal of Physical Chemistry., 81, 1622–1625.

    Article  CAS  Google Scholar 

  • Moraes, F. C., Rossi, B., Donatoni, M. C., de Oliveira, K. T., & Pereira, E. C. (2015). Sensitive determination of 17β-estradiol in river water using a graphene based electrochemical sensor. Analytica Chimica Acta, 881, 37–43.

    Article  CAS  Google Scholar 

  • Nejumal, K. K., et al. (2017). Presence of bisphenol S and surfactants in the sediments of Kongsfjorden: a negative impact of human activities in Arctic? Environmental Monitoring and Assessment., 190, 22.

    Article  CAS  Google Scholar 

  • Ngumba, E., Gachanja, A., & Tuhkanen, T. (2016). Occurrence of selected antibiotics and antiretroviral drugs in Nairobi River Basin, Kenya. Science of The Total Environment., 539, 206–213.

    Article  CAS  Google Scholar 

  • Oliveira, T. S., et al. (2015). Characterization of pharmaceuticals and personal care products in hospital effluent and waste water influent/effluent by direct-injection LC-MS-MS. Science of The Total Environment., 518–519, 459–478.

    Article  CAS  Google Scholar 

  • Olkowska, E., Polkowska, Ż., & Namieśnik, J. (2012). Analytical procedures for the determination of surfactants in environmental samples. Talanta, 88, 1–13.

    Article  CAS  Google Scholar 

  • Ouyang, X., Leonards, P., Legler, J., van der Oost, R., de Boer, J., & Lamoree, M. (2015). Comprehensive two-dimensional liquid chromatography coupled to high resolution time of flight mass spectrometry for chemical characterization of sewage treatment plant effluents. Journal of Chromatography A., 1380, 139–145.

    Article  CAS  Google Scholar 

  • Pignatello, J. J., Oliveros, E., & MacKay, A. (2006). Advanced oxidation processes for organic contaminant destruction based on the Fenton reaction and related chemistry. Critical Reviews in Environmental Science and Technology., 36, 1–84.

    Article  CAS  Google Scholar 

  • Portolés, T., Mol, J. G. J., Sancho, J. V., & Hernández, F. (2014). Use of electron ionization and atmospheric pressure chemical ionization in gas chromatography coupled to time-of-flight mass spectrometry for screening and identification of organic pollutants in waters. Journal of Chromatography A., 1339, 145–153.

    Article  CAS  Google Scholar 

  • Prebihalo, S., Brockman, A., Cochran, J., & Dorman, F. L. (2015). Determination of emerging contaminants in wastewater utilizing comprehensive two-dimensional gas-chromatography coupled with time-of-flight mass spectrometry. Journal of Chromatography A., 1419, 109–115.

    Article  CAS  Google Scholar 

  • Rauf, M. A., & Ashraf, S. S. (2009). Fundamental principles and application of heterogeneous photocatalytic degradation of dyes in solution. Chemical Engineering Journal., 151, 10–18.

    Article  CAS  Google Scholar 

  • Rayaroth, M. P., et al. (2015). Identification of chlorophene in a backwater stream in Kerala (India) and its sonochemical degradation studies. CLEAN – Soil, Air, Water., 43, 1338–1343.

    Article  CAS  Google Scholar 

  • Robles-Molina, J., Gilbert-López, B., García-Reyes, J. F., & Molina-Díaz, A. (2013). Gas chromatography triple quadrupole mass spectrometry method for monitoring multiclass organic pollutants in Spanish sewage treatment plants effluents. Talanta, 111, 196–205.

    Article  CAS  Google Scholar 

  • Robles-Molina, J., et al. (2014). Monitoring of selected priority and emerging contaminants in the Guadalquivir River and other related surface waters in the province of Jaén, South East Spain. Science of The Total Environment., 479–480, 247–257.

    Article  CAS  Google Scholar 

  • Rua-Gomez, P. C., & Puttmann, W. (2012). Impact of wastewater treatment plant discharge of lidocaine, tramadol, venlafaxine and their metabolites on the quality of surface waters and groundwater. Journal of Environmental Monitoring., 14, 1391–1399.

    Article  CAS  Google Scholar 

  • Salvador, A., & Chisvert, A. (2005). Sunscreen analysis: a critical survey on UV filters determination. Analytica Chimica Acta, 537, 1–14.

    Article  CAS  Google Scholar 

  • Selvarajan, N., & Raghavan, N. V. (1980). Reaction of hydroxyl with pyridine. Pulse-radiolytic and product-analysis studies. The Journal of Physical Chemistry., 84, 2548–2551.

    Article  CAS  Google Scholar 

  • Stapleton, D. R., Konstantinou, I. K., Karakitsou, A., Hela, D. G., & Papadaki, M. (2009). 2-Hydroxypyridine photolytic degradation by 254 nm UV irradiation at different conditions. Chemosphere, 77, 1099–1105.

    Article  CAS  Google Scholar 

  • Stoob, K., Singer, H. P., Goetz, C. W., Ruff, M., & Mueller, S. R. (2005). Fully automated online solid phase extraction coupled directly to liquid chromatography–tandem mass spectrometry: quantification of sulfonamide antibiotics, neutral and acidic pesticides at low concentrations in surface waters. Journal of Chromatography A., 1097, 138–147.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

KKN and CTA are thankful to the KSCSTE, Thiruvananthapuram for a research fellowship, and for financial support, respectively

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Charuvila T. Aravindakumar.

Electronic supplementary material

ESM 1

(DOC 234 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Khalid, N.K., Devadasan, D., Aravind, U.K. et al. Screening and quantification of emerging contaminants in Periyar River, Kerala (India) by using high-resolution mass spectrometry (LC-Q-ToF-MS). Environ Monit Assess 190, 370 (2018). https://doi.org/10.1007/s10661-018-6745-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10661-018-6745-9

Keywords

Navigation