Skip to main content

Advertisement

Log in

Spatiotemporal distribution and the characteristics of the air temperature of a river source region of the Qinghai-Tibet Plateau

  • Published:
Environmental Monitoring and Assessment Aims and scope Submit manuscript

Abstract

As the backland of the Qinghai-Tibet Plateau, the river source region is highly sensitive to changes in global climate. Air temperature estimation using remote sensing satellite provides a new way of conducting studies in the field of climate change study. A geographically weighted regression model was applied to estimate synchronic air temperature from 2001 to 2015 using Moderate-Resolution Imaging Spectroradiometry (MODIS) data. The results were R2 = 0.913 and RMSE = 2.47 °C, which confirmed the feasibility of the estimation. The spatial distribution and variation characteristics of the average annual and seasonal air temperature were analyzed. The findings are as follows: (1) the distribution of average annual air temperature has significant terrain characteristics. The reduction in average annual air temperature along the elevation of the region is 0.19 °C/km, whereas the reduction in the average annual air temperature along the latitude is 0.04 °C/degree. (2) The average annual air temperature increase in the region is 0.37 °C/decade. The average air temperature increase could be arranged in the following decreasing order: Yangtze River Basin > Mekong River Basin > Nujiang River Basin > Yarlung Zangbo River Basin > Yellow River Basin. The fastest, namely, Yangtze River Basin, is 0.47 °C/decade. (3) The average air temperature rise in spring, summer, and winter generally increases with higher altitude. The average annual air temperature in different types of lands following a decreasing order is as follows: wetland > construction land > bare land glacier > shrub grassland > arable land > forest land > water body and that of the fastest one, wetland, is 0.13 °C/year.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  • Beniston, M., & Rebetez, M. (1996). Regional behavior of minimum temperatures in Switzerland for the period 1979–1993. Theoretical & Applied Climatology, 53(4), 231–243.

    Article  Google Scholar 

  • Brunsdon, C., Fotheringham, S., & Charlton, M. (1998). Geographically weighted regression-modelling spatial non-stationarity. Journal of the Royal Statistical Society, 47(3), 431–443.

    Google Scholar 

  • Ceppi, P., Scherrer, S. C., Fischer, A. M., & Appenzeller, C. (2012). Revisiting Swiss temperature trends 1959–2008. International Journal of Climatology, 32(2), 203–213.

    Article  Google Scholar 

  • Colombi, A., Michele, C. D., Pepe, M., & Rampini, A. (2007). Estimation of daily mean air temperature from MODIS LST in alpine areas. Earsel Eproceedings, 6(1), 38–46.

    Google Scholar 

  • Diaz, H. F., & Eischeid, J. K. (2007). Disappearing “alpine tundra” köppen climatic type in the western United States. Geophysical Research Letters, 34(18), L18707.

    Article  Google Scholar 

  • Giorgi, F., Hurrell, J. W., Marinucci, M. R., & Beniston, M. (1997). Elevation dependency of the surface climate change signal: a model study. Journal of Climate, 10(2), 288–296.

    Article  Google Scholar 

  • Hansen, J., Sato, M., & Ruedy, R. (1997). Radiative forcing and climate response. Journal of Geophysical Research Atmospheres, 102(D6), 6831–6864.

    Article  CAS  Google Scholar 

  • Knight, J. (2009). Do global temperature trends over the last decade falsify climate predictions? Bulletin of the American Meteorological Society, 90.

  • Li, X., Cheng, G., & Lu, L. (2003). Comparison study of spatial interpolation methods of air temperature over Qinghai-Xizang plateau. Plateau Meteorology, 22(6), 565–573.

    Google Scholar 

  • Ma, J., Guan, X., Guo, R., Gan, Z., & Xie, Y. (2017). Mechanism of non-appearance of hiatus in Tibetan plateau. Scientific Reports, 7(1).

  • Mao, K. B., Ma, Y., Xia, L., Chen, W. Y., Shen, X. Y., He, T. J., & Xu, T. R. (2014). Global aerosol change in the last decade: an analysis based on MODIS data. Atmospheric Environment, 94, 680–686.

    Article  CAS  Google Scholar 

  • Mostovoy, G., King, R., Rajareddy, K., Gopalkakani, V., & Filippova, M. (2006). Statistical estimation of daily maximum and minimum air temperatures from MODIS LST data over the state of Mississippi. Mapping Sciences & Remote Sensing, 43(1), 78–110.

    Article  Google Scholar 

  • Philipona, R., Dürr, B., Ohmura, A., & Ruckstuhl, C. (2005). Anthropogenic greenhouse forcing and strong water vapor feedback increase temperature in Europe. Geophysical Research Letters, 32(19), 312–321.

    Article  Google Scholar 

  • Rangwala, I., Miller, J. R., Russell, G. L., & Ming, X. (2009). Using a global climate model to evaluate the influences of water vapor, snow cover and atmospheric aerosol on warming in the tibetan plateau during the twenty-first century. Climate Dynamics, 34(6), 859–872.

    Article  Google Scholar 

  • Shen, S., & Leptoukh, G. G. (2011). Estimation of surface air temperature over central and eastern Eurasia from MODIS land surface temperature. Environmental Research Letters, 6(4), 045206.

    Article  Google Scholar 

  • Song, C., Tao, P., & Zhou, C. (2012). Research progresses of surface temperature characteristic change over tibetan plateau since 1960. Progress in Geography, 31(11), 1503–1509.

    Google Scholar 

  • Urrutia, R., & Vuille, M. (2009). Climate change projections for the tropical Andes using a regional climate model: Temperature and precipitation simulations for the end of the 21st century. Journal of Geophysical Research Atmospheres, 114(D2), −.

  • Vancutsem, C., Ceccato, P., Dinku, T., & Connor, S. J. (2010). Evaluation of MODIS land surface temperature data to estimate air temperature in different ecosystems over Africa. Remote Sensing of Environment, 114(2), 449–465.

    Article  Google Scholar 

  • Viviroli, D., Dürr, H. H., Messerli, B., Meybeck, M., & Weingartner, R. (2007). Mountains of the world, water towers for humanity: typology, mapping, and global significance. Water Resources Research, 43(7), 685–698.

    Article  Google Scholar 

  • Yang, J. P., Ding, Y. J., Shen, Y. P., Liu, S. Y., & Chen, R. S. (2004). Climatic features of eco-environment change in the source regions of the Yangtze and Yellow rivers in recent 40 years. Journal of Glaciology & Geocryology, 26(1), 7–16.

    CAS  Google Scholar 

  • Yao, Y., Zhang, B., & Han, F. (2011). Modis-based air temperature estimation in the Hengduan mountains and its spatio-temporal analysis. Acta Geographica Sinica, 102-104(7), 17–21.

    Google Scholar 

  • Yao, T., Thompson, L. G., Mosbrugger, V., Zhang, F., Ma, Y., Luo, T., Xu, B., Yang, X., Joswiak, D. R., Wang, W., Joswiak, M. E., Devkota, L. P., Tayal, S., Jilani, R., & Fayziev, R. (2012). Third pole environment (TPE). Environmental Development, 3(1), 52–64.

    Article  Google Scholar 

  • Yi, X., Yin, Y., Li, G., & Peng, J. (2011). Temperature variation in recent 50 years in the three-river headwaters region of Qinghai province. Acta Geographica Sinica.

  • Zhang, G., Yao, T., Xie, H., Qin, J., Ye, Q., Dai, Y., et al. (2015). Estimating surface temperature changes of lakes in the Tibetan plateau using MODIS LST data. Journal of Geophysical Research Atmospheres, 119(14), 8552–8567.

    Article  Google Scholar 

  • Zhang, H., Zhang, F., Ye, M., Che, T., & Zhang, G. (2016). Estimating daily air temperatures over the Tibetan plateau by dynamically integrating MODIS LST data. Journal of Geophysical Research-Atmospheres, 121(19), 11425–11441.

    Article  Google Scholar 

Download references

Acknowledgments

This study was financially supported by the National Key Research and Development Program of China (Grant No. 2016YFA0602302 and No. 2016YFB0502502).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wanchang Zhang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Deng, C., Zhang, W. Spatiotemporal distribution and the characteristics of the air temperature of a river source region of the Qinghai-Tibet Plateau. Environ Monit Assess 190, 368 (2018). https://doi.org/10.1007/s10661-018-6739-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10661-018-6739-7

Keywords

Navigation