Skip to main content

Advertisement

Log in

Hierarchical classification of land use types using multiple vegetation indices to measure the effects of urbanization

  • Published:
Environmental Monitoring and Assessment Aims and scope Submit manuscript

Abstract

Detecting fine-scale spatiotemporal land use changes is a prerequisite for understanding and predicting the effects of urbanization and its related human impacts on the ecosystem. Land use changes are frequently examined using vegetation indices (VIs), although the validation of these indices has not been conducted at a high resolution. Therefore, a hierarchical classification was constructed to obtain accurate land use types at a fine scale. The characteristics of four popular VIs were investigated prior to examining the hierarchical classification by using Purbachal New Town, Bangladesh, which exhibits ongoing urbanization. These four VIs are the normalized difference VI (NDVI), green-red VI (GRVI), enhanced VI (EVI), and two-band EVI (EVI2). The reflectance data were obtained by the IKONOS (0.8-m resolution) and WorldView-2 sensor (0.5-m resolution) in 2001 and 2015, respectively. The hierarchical classification of land use types was constructed using a decision tree (DT) utilizing all four of the examined VIs. The accuracy of the classification was evaluated using ground truth data with multiple comparisons and kappa (κ) coefficients. The DT showed overall accuracies of 96.1 and 97.8% in 2001 and 2015, respectively, while the accuracies of the VIs were less than 91.2%. These results indicate that each VI exhibits unique advantages. In addition, the DT was the best classifier of land use types, particularly for native ecosystems represented by Shorea forests and homestead vegetation, at the fine scale. Since the conservation of these native ecosystems is of prime importance, DTs based on hierarchical classifications should be used more widely.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

References

  • Aguilar, M. A., Saldaña, M. M., & Aguilar, F. J. (2013). GeoEye-1 and WorldView-2 pan-sharpened imagery for object-based classification in urban environments. International Journal of Remote Sensing, 34, 2583–2606. https://doi.org/10.1080/01431161.2012.747018.

    Article  Google Scholar 

  • Akay, S. S., & Sertel, E. (2016). Urban land cover/use change detection using high resolution spot 5 and spot 6 images and urban atlas nomenclature. The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, XLI-B8, 789–796. XXIII ISPRS Congress, Prague, Czech Republic. https://doi.org/10.5194/isprs-archives-XLI-B8-789-2016.

  • Anonymous (2013). Environmental impact assessment (EIA) of Purbachal New Town project. Rajdhani Unnayan Kartripakkha (RAJUK), Ministry of Housing and Public Works, Government of the People’s Republic of Bangladesh.

  • Barzegar, M., Ebadi, H., & Kiani, A. (2015). Comparison of different vegetation indices for very high-resolution images, specific case UltraCam-D imagery. Remote Sensing and Spatial Information Sciences, XL-1/W5, 97–104. https://doi.org/10.5194/isprsarchives-XL-1-W5-97-2015.

    Article  Google Scholar 

  • Boyle, S. A., Kennedy, C. M., Torres, J., Colman, K., Pérez-Estigarribia, P. E., & de la Sancha, N. U. (2014). High-resolution satellite imagery is an important yet underutilized resource in conservation biology. PLoS One, 9, e86908. https://doi.org/10.1371/journal.pone.0086908.

    Article  CAS  Google Scholar 

  • Brown De Colstoun, E. C. B., Story, M. H., Thompson, C., Commisso, K., Smith, T. G., & Irons, J. R. (2003). National Park vegetation mapping using multi-temporal Landsat 7 data and a decision tree classifier. Remote Sensing of Environment, 85, 316−327.

    Article  Google Scholar 

  • Cristiano, P. M., Madanes, N., Campanello, P. I., di Francescantonio, D., Rodríguez, S. A., Zhang, Y.-J., Carrasco, L. O., & Goldstein, G. (2014). High NDVI and potential canopy photosynthesis of South American subtropical forests despite seasonal changes in leaf area index and air temperature. Forests, 5, 287–308. https://doi.org/10.3390/f5020287.

    Article  Google Scholar 

  • Dewan, A. M., & Yamaguchi, Y. (2009). Using remote sensing and GIS to detect and monitor land use and land cover change in Dhaka Metropolitan of Bangladesh during 1960–2005. Environmental Monitoring and Assessment, 150, 237–249. https://doi.org/10.1007/s10661-008-0226-5.

    Article  Google Scholar 

  • Dibs, H., Idrees, M. O., & Alsalhin, G. B. A. (2017). Hierarchical classification approach for mapping rubber tree growth using per-pixel and object-oriented classifiers with SPOT-5 imagery. The Egyptian Journal of Remote Sensing and Space Sciences, 20, 21–30. https://doi.org/10.1016/j.ejrs.2017.01.004.

    Article  Google Scholar 

  • Erener, A., Düzgün, S., & Yalciner, A. C. (2012). Evaluating land use/cover change with temporal satellite data and information systems. Procedia Technology, 1, 385–389. https://doi.org/10.1016/j.protcy.2012.02.079.

    Article  Google Scholar 

  • Fisher, J. R. B., Acosta, E. A., Dennedy-Frank, P. J., Kroeger, T., & Boucher, T. M. (2017). Impact of satellite imagery spatial resolution on land use classification accuracy and modeled water quality. Remote Sensing in Ecology and Conservation, n/a, 1–13. https://doi.org/10.1002/rse2.61.

    Article  Google Scholar 

  • Fonji, S. F., & Taff, G. N. (2014). Using satellite data to monitor land-use land-cover change in North-Eastern Latvia. Springer Plus, 3, 61. https://doi.org/10.1186/2193-1801-3-61.

    Article  Google Scholar 

  • Foody, G. M. (2002). Status of land cover classification accuracy assessment. Remote Sensing of Environment, 80, 185–201. https://doi.org/10.1016/S0034-4257(01)00295-4.

    Article  Google Scholar 

  • Gautam, K. H., & Devoe, N. N. (2006). Ecological and anthropogenic niches of sal (Shorea robusta Gaertn. f.) forest and prospects for multiple-product forest management—a review. Forestry (London), 79, 81–101. https://doi.org/10.1093/forestry/cpi063.

    Article  Google Scholar 

  • Hasnat, M. M., & Hoque, M. S. (2016). Developing satellite towns: a solution to housing problem or creation of new problems. IACSIT International Journal of Engineering and Technology, 8, 50–56.

    Article  Google Scholar 

  • Hassan, M. M. (2004). A study on flora species diversity and their relations with farmers’ socio-agro-economic condition in Madhupur Sal forest. Dissertation, Department of Agroforestry, Bangladesh Agricultural University, Mymensingh.

  • Holben, B. N., & Justice, C. O. (1981). An examination of spectral band ratioing to reduce the topographic effect on remotely sensed data. International Journal of Remote Sensing, 2, 115–133. https://doi.org/10.1080/01431168108948349.

    Article  Google Scholar 

  • Hossain, S. (2013). Migration, urbanization and poverty in Dhaka, Bangladesh. Journal of the Asiatic Society of Bangladesh (Hum.), 58, 369–382.

    Google Scholar 

  • Huete, A. (1988). A soil-adjusted vegetation index (SAVI). Remote Sensing of Environment, 25, 295–309.

    Article  Google Scholar 

  • Huete, A., Justice, C., & Liu, H. (1994). Development of vegetation and soil indices for MODIS-EOS. Remote Sensing of Environment, 49, 224–234.

    Article  Google Scholar 

  • Huete, A. R., Liu, H. Q., Batchily, K., & van Leeuwen, W. (1997). A comparison of vegetation indices over a global set of TM images for EOS-MODIS. Remote Sensing of Environment, 59, 440–451. https://doi.org/10.1016/S0034-4257(96)00112-5.

    Article  Google Scholar 

  • Huete, A. R., Justice, C., & van Leeuwen, W. (1999). MODIS vegetation index (MOD13) algorithm theoretical basis document. Version 3.1. Vegetation Index and Phenology Lab, The University of Arizona.

  • Huete, A., Didan, K., Miura, T., Rodriguez, E. P., Gao, X., & Ferreira, L. G. (2002). Overview of the radiometric and biophysical performance of the MODIS vegetation indices. Remote Sensing of Environment, 83, 195–213. https://doi.org/10.1016/S0034-4257(02)00096-2.

    Article  Google Scholar 

  • Jiang, Z., Huete, A. R., Kim, Y., & Didan, K. (2007). 2-band enhanced vegetation index without a blue band and its application to AVHRR data. Remote Sensing and Modeling of Ecosystems for Sustainability, 6679(667905), 1–9. https://doi.org/10.1117/12.734933.

    Article  Google Scholar 

  • Jiang, Z., Huete, A. R., Didan, K., & Miura, T. (2008). Development of a two-band enhanced vegetation index without a blue band. Remote Sensing of Environment, 112, 3833–3845.

    Article  Google Scholar 

  • Joshi, & Chandra, P. (2011). Performance evaluation of vegetation indices using remotely sensed data. International Journal of Geomatics and Geosciences, 2, 231–240 ISSN 0976 – 4380.

    Article  CAS  Google Scholar 

  • Joshi, N., Baumann, M., Ehammer, A., Fensholt, R., Grogan, K., Hostert, P., Jepsen, M. R., et al. (2016). A review of the application of optical and radar remote sensing data fusion to land use mapping and monitoring. Remote Sensing, 8, 70. https://doi.org/10.3390/rs8010070.

    Article  Google Scholar 

  • Julien, Y., Sobrino, J. A., Mattar, C., Ruescas, A. B., Jime’nez-Munoz, J. C., So’ria, G., Hidalgo, V., Atitar, M., Franch, B., & Cuenca, J. (2011). Temporal analysis of normalized difference vegetation index (NDVI) and land surface temperature (LST) parameters to detect changes in the Iberian land cover between 1981 and 2001. International Journal of Remote Sensing, 32, 2057–2068. https://doi.org/10.1080/01431161003762363.

    Article  Google Scholar 

  • Kalyani, P., & Govindarajulu, P. (2015). Multi-scale urban analysis using remote sensing and GIS. Geoinformatica: An International Journal (GIIJ), 5, 1–11.

    Google Scholar 

  • Karnieli, A., Bayarjargal, Y., Bayasgalan, M., Mandakh, B., Dugarjav, C., Burgheimer, J., Khudulmur, S., Bazha, S. N., & Gunin, P. D. (2013). Do vegetation indices provide a reliable indication of vegetation degradation? A case study in the Mongolian pastures. International Journal of Remote Sensing, 34, 6243–6262. https://doi.org/10.1080/01431161.2013.793865.

    Article  Google Scholar 

  • Khatun, H., Falgunee, N., & Kutub, M. J. R. (2015). Analyzing urban population density gradient of Dhaka metropolitan area using geographic information systems (GIS) and census data. Malaysian Journal of Society and Space, 13, 1–13 ISSN 2180-2491.

    Google Scholar 

  • Kinthada, N. R., Gurram, M. K., Eadara, A., & Velagala, V. R. (2014). Land use/land cover and NDVI analysis for monitoring the health of micro-watersheds of Sarada River basin, Visakhapatnam District, India. Journal of Geology and Geophysics, 3, 146. https://doi.org/10.4172/2329-6755.1000146.

    Article  Google Scholar 

  • Kushida, K., Hobara, S., Tsuyuzaki, S., Kim, Y., Watanabe, M., Setiawan, Y., Harada, K., Shaver, G. R., & Fukuda, M. (2015). Spectral indices for remote sensing of phytomass, deciduous shrubs, and productivity in Alaskan Arctic tundra. International Journal of Remote Sensing, 36, 4344–4362. https://doi.org/10.1080/01431161.2015.1080878.

    Article  Google Scholar 

  • Laliberte, A. S., Fredrickson, E. L., & Rango, A. (2007). Combining decision trees with hierarchical object-oriented image analysis for mapping arid rangelands. Journal of Photogrammetric Engineering and Remote Sensing, 73, 197–207.

    Article  Google Scholar 

  • Lunetta, R. S., Knight, J. F., Ediriwickrema, J., Lyon, J. G., & Worthy, L. D. (2006). Land-cover change detection using multi-temporal MODIS NDVI data. Remote Sensing of Environment, 105, 142–154.

    Article  Google Scholar 

  • Mandal, R. A., Yadav, B. K. V., Yadav, K. K., Dutta, I. C., & Haque, S. M. (2013). Biodiversity comparison of natural Shorea robusta mixed forest with Eucalyptus Camaldulensis plantation in Nepal. Scholars Academic Journal of Biosciences (SAJB), 1, 144–149.

    Google Scholar 

  • Markogianni, V., Dimitriou, E., & Kalivas, D. P. (2013). Land-use and vegetation change detection in Plastira artificial lake catchment (Greece) by using remote sensing and GIS techniques. International Journal of Remote Sensing, 34, 1265–1281. https://doi.org/10.1080/01431161.2012.718454.

    Article  Google Scholar 

  • Matsushita, B., Yang, W., Chen, J., Onda, Y., & Qiu, G. (2007). Sensitivity of the enhanced vegetation index (EVI) and normalized difference vegetation index (NDVI) to topographic effects: a case study in high-density cypress forest. Sensors, 7, 2636–2651.

    Article  Google Scholar 

  • Merlotto, A., Piccolo, M. C., & Bertola, G. R. (2012). Urban growth and land use/cover change at Necochea and Quequen cities, Buenos Aires province, Argentina. Revista de Geografia Norte Grande, 53, 159–176.

    Article  Google Scholar 

  • Miura, T., Huete, A. R., Yoshioka, H., & Holben, B. N. (2001). An error and sensitivity analysis of atmospheric resistant vegetation indices de-rived from dark target-based atmospheric correction. Remote Sensing of Environment, 78, 284–298.

    Article  Google Scholar 

  • Motohka, T., Nasahara, K. N., Oguma, H., & Tsuchida, S. (2010). Applicability of green-red vegetation index for remote sensing of vegetation phenology. Remote Sensing, 2, 2369–2387. https://doi.org/10.3390/rs2102369.

    Article  Google Scholar 

  • Mountrakis, G., Im, J., & Ogole, C. (2011). Support vector machines in remote sensing: a review. ISPRS Journal of Photogrammetry and Remote Sensing, 66(3), 247–259.

    Article  Google Scholar 

  • Myneni, R. B., Keeling, C. D., Tucker, C. J., Asrar, G., & Nemani, R. R. (1997). Increased plant growth in the northern high latitudes from 1981 to 1991. Nature, 386, 698–702. https://doi.org/10.1038/386698a0.

    Article  CAS  Google Scholar 

  • Nagai, S., Saitoh, T. M., Kobayashi, H., Ishihara, M., Suzuki, R., Motohka, T., Nasahara, K. N., & Muraoka, H. (2012). In situ examination of the relationship between various vegetation indices and canopy phenology in an evergreen coniferous forest, Japan. International Journal of Remote Sensing, 33, 6202–6214.

    Article  Google Scholar 

  • Nigam, R. K. (2000). Application of remote sensing and geographical information system for land use/land cover mapping and change detection in the rural urban fringe area of Enschede City, the Netherlands. International Archives of Photogrammetry and Remote Sensing, 33, 993–998.

    Google Scholar 

  • Nouri, H., Beecham, S., Anderson, S., & Nagler, P. (2014). High spatial resolution WorldView-2 imagery for mapping NDVI and its relationship to temporal urban landscape evapotranspiration factors. Remote Sensing, 6, 580–602. https://doi.org/10.3390/rs6010580.

    Article  Google Scholar 

  • O'Connell, J., Connolly, J., Vermote, E. F., & Holden, N. M. (2013). Radiometric normalization for change detection in peatlands: a modified temporal invariant cluster approach. International Journal of Remote Sensing, 34, 2905–2924. https://doi.org/10.1080/01431161.2012.752886.

    Article  Google Scholar 

  • Phompila, C., Lewis, M., Ostendorf, B., & Clarke, K. (2015). MODIS EVI and LST temporal response for discrimination of tropical land covers. Remote Sensing, 7, 6026–6040. https://doi.org/10.3390/rs70506026.

    Article  Google Scholar 

  • Pigeon, G., Lemonsu, A., Long, N., Barrié, J., Masson, V., & Durand, P. (2006). Urban thermodynamic island in a coastal city analysed from an optimized surface network. Boundary-Layer Meteorology, 120, 315–351.

    Article  Google Scholar 

  • Pijanowski, B. C., Brown, D. G., Shellito, B., & Manik, G. (2002). Using neural networks and GIS to forecast land use changes: a land transformation model. Computers, Environment and Urban Systems, 26, 553–575. https://doi.org/10.1016/S0198-9715(01)00015-1.

    Article  Google Scholar 

  • Rahman, M. A., Woobaidullah, A. S. M., Quamruzzaman, C., Rahman, M. M., Khan, A. U., & Mustahid, F. (2016a). Probable liquefaction map for Purbachal New Town, Dhaka, Bangladesh. International Journal of Emerging Technology and Advanced Engineering, 6, 345–356.

    Google Scholar 

  • Rahman, M. A., Mostafa Kamal, S. M., & Maruf Billah, M. (2016b). Rainfall variability and linear trend models on north-west part of Bangladesh for the last 40 years. American Journal of Applied Mathematics, 4, 158–162. https://doi.org/10.11648/j.ajam.20160403.16.

    Article  Google Scholar 

  • Rocha, A. V., & Shaver, G. R. (2009). Advantages of a two band EVI calculated from solar and photosynthetically active radiation fluxes. Agricultural and Forest Meteorology, 149, 1560–1563.

    Article  Google Scholar 

  • Rouse, J. W., Haas, R. H., Deering, D. W., Schell, J. A., & Harlan, J. C. (1974). Monitoring the vernal advancement and retrogradation (green wave effect) of natural vegetation. Technical Report, No E74–10676, NASA-CR-139243, PR-7. ID: 19740022555. Texas A&M Univ.; Remote Sensing Center, College Station.

  • Sahebjalal, E., & Dashtekian, K. (2013). Analysis of land use-land covers changes using normalized difference vegetation index (NDVI) differencing and classification methods. African Journal of Agricultural Research, 8, 4614–4622. https://doi.org/10.5897/AJAR11.1825.

    Article  Google Scholar 

  • Salam, M. A., Noguchi, T., & Koike, M. (1999). The causes of forest cover loss in the hill forests in Bangladesh. GeoJournal, 47, 539–549.

    Article  Google Scholar 

  • Saleska, S. R., Didan, K., Huete, A. R., & da Rocha, H. R. (2007). Amazon forests green-up during 2005 drought. Science, 318, 612.

    Article  CAS  Google Scholar 

  • Sesnie, S. E., Gessler, P. E., Finegan, B., & Thessler, S. (2008). Integrating Landsat TM and SRTM-DEM derived variables with decision trees for habitat classification and change detection in complex neotropical environments. Remote Sensing of Environment, 112(5), 2145−2159.

    Article  Google Scholar 

  • Shapla, T., Park, J., Hongo, C., & Kuze, H. (2015). Agricultural land cover change in Gazipur, Bangladesh, in relation to local economy studied using Landsat images. Advances in Remote Sensing, 4, 214–223. https://doi.org/10.4236/ars.2015.43017.

    Article  Google Scholar 

  • Singh, R. P., Singh, N., Singh, S., & Mukherjee, S. (2016). Normalized difference vegetation index (NDVI) based classification to assess the change in land use/land cover (LULC) in Lower Assam, India. International Journal of Advanced Remote Sensing and GIS, 5, 1963–1970. https://doi.org/10.23953/cloud.ijarsg.74.

    Article  Google Scholar 

  • Tucker, C. J. (1979). Red and photographic infrared linear combinations for monitoring vegetation. Remote Sensing of Environment, 8, 127–150. https://doi.org/10.1016/0034-4257(79)90013-0.

    Article  Google Scholar 

  • Van Leeuwen, W. J. D., & Huete, A. R. (1996). Effects of standing litter on the biophysical interpretation of plant canopies with spectral indices. Remote Sensing of Environment, 55, 123–138. https://doi.org/10.1016/0034-4257(95)00198-0.

    Article  Google Scholar 

  • Wardlow, B. D., Egbert, S. L., & Kastens, J. H. (2007). Analysis of time-series MODIS 250 m vegetation index data for crop classification in the U.S. Central Great Plains. Remote Sensing of Environment, 108, 290–310.

    Article  Google Scholar 

  • Xie, Y., Sha, Z., & Yu, M. (2008). Remote sensing imagery in vegetation mapping: a review. Journal of Plant Ecology, 1, 9–23. https://doi.org/10.1093/jpe/rtm005.

    Article  Google Scholar 

  • Zaman, A. K. M. A. (2016). Precarious periphery: Satellite township development causing socio-political economic and environmental threats at the fringe areas of Dhaka. Unpublished Paper. Department of Architecture, KU Leuven. https://doi.org/10.13140/rg.2.2.30067.32807.

  • Zar, J. H. (1999). Biostatistical analysis. Department of Biological Sciences, Northern Illinois University. 4th Ed. New Jersey 07458, USA. Prentice Hall, Inc. Simon & Schuster. ISBN 0-13-082390-2.

  • Zhou, N. Q., & Zhao, S. (2013). Urbanization process and induced environmental geological hazards in China. Natural Hazards, 67, 797–810. https://doi.org/10.1007/s11069-013-0606-1.

    Article  Google Scholar 

Download references

Acknowledgements

We would like to acknowledge the Japan Science Society (research number: 29-508) for providing the funding for this research. We thank Lea Vegh for her help during the satellite data acquisition and Dr. TaeOh Kwon. We are also grateful to Springer Nature Author Services for English language editing.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sharmin Shishir.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shishir, S., Tsuyuzaki, S. Hierarchical classification of land use types using multiple vegetation indices to measure the effects of urbanization. Environ Monit Assess 190, 342 (2018). https://doi.org/10.1007/s10661-018-6714-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10661-018-6714-3

Keywords

Navigation