Municipal wastewater treatment potential and metal accumulation strategies of Colocasia esculenta (L.) Schott and Typha latifolia L. in a constructed wetland

Abstract

This paper elucidates phytoremediation potential of two wetland plants (Colocasia esculenta (L.) Schott and Typha latifolia L.) for municipal wastewater treatment using constructed wetland (CW) mesocosms. The concentrations (mg L−1) of chemical oxygen demand (COD), total kjeldahl nitrogen (TKN), Cu, Cd, Cr, Zn, and Pb in municipal wastewater were higher than permissible Indian standards for inland surface water disposal; however, Mn and Ni were within the permissible limits. The pollutant removal efficiencies of planted CWs varied as electrical conductivity (EC) 67.8–71.4%; COD 70.7–71.1%; TKN 63.8–72.3%; Cu 75.3–83.4%; Cd 73.9–83.1%; Mn 74.1–74.5%; Cr 64.8–73.6%; Co 82.2–84.2%; Zn 63.3–66.1%; Pb 71.4–77.9%; and Ni 76–80%. Mass balance analysis revealed that the loss of metals from wastewater was equivalent to net accumulation in plants and natural degradation of metals. Metal accumulation strategies of plants were investigated using bioconcentration factor (BCF) and translocation factor (TF) of metals which indicated that both plants could be employed for phytostabilization (BCF > 1 and TF < 1) of Cu, Cd, Co, Pb, and Ni and phytoextraction (BCF > 1 and TF > 1) of Mn and Zn. The study demonstrated that a reduction of pollutants (except Pb) was observed within permissible levels (BIS) and suggested disposal of municipal wastewater into the inland surface water bodies after 20 days of treatment. The study concluded that both the plants could potentially be used for an efficient municipal wastewater treatment using constructed wetlands.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

References

  1. Abou-Elela, S. I., Golinielli, G., Abou-Taleb, E. M., & Hellal, M. S. (2013). Municipal wastewater treatment in horizontal and vertical flows constructed wetlands. Ecological Engineering, 61, 460–468.

    Article  Google Scholar 

  2. Alloway, B. J. (1990). Heavy metals in soils (p. 339). Glasgow: Blackie Academic & Professional.

    Google Scholar 

  3. APHA. (2012). Standard methods for the examination of water and wastewater (12th ed.). Washington DC: APHA, AWWA, WEF.

    Google Scholar 

  4. Aran, D. S., Harguinteguy, C. A., Fernandez-Cirelli, A., & Pignata, M. L. (2017). Phytoextraction of Pb, Cr, Ni, and Zn using the aquatic plant Limnobium laevigatum and its potential use in the treatment of wastewater. Environmental Science and Pollution Research, 24(22), 18295–18308.

    Article  CAS  Google Scholar 

  5. Arivoli, A., Mohanraj, R., & Seenivasan, R. (2015). Application of vertical flow constructed wetland in treatment of heavy metals from pulp and paper industry wastewater. Environmental Science and Pollution Research, 22(17), 13336–13343.

    Article  CAS  Google Scholar 

  6. Armstrong, W. (1979). Aeration in higher plants. In H. Woolhouse (Ed.), Advances in botanical research (pp. 225–332). London: Academic Press.

    Google Scholar 

  7. Barakat, M. A. (2011). New trends in removing heavy metals from industrial wastewater. Arabian Journal of Chemistry, 4(4), 361–377.

    Article  CAS  Google Scholar 

  8. Bendix, M., Tornbjerg, T., & Brix, H. (1994). Internal gas transport in Typha latifolia L. and Typha angustifolia L. 1. Humidity-induced pressurization and convective through flow. Aquatic Botany, 49(2–3), 75–89.

    Article  Google Scholar 

  9. Bilgin, M., Şimşek, İ., & Tulun, Ş. (2014). Treatment of domestic wastewater using a lab-scale activated sludge/vertical flow subsurface constructed wetlands by using Cyperus alternifolius. Ecological Engineering, 70, 362–365.

    Article  Google Scholar 

  10. Bindu, T., Sylas, V. P., Mahesh, M., Rakesh, P. S., & Ramasamy, E. V. (2008). Pollutant removal from domestic wastewater with Taro (Colocasia esculenta) planted in a subsurface flow system. Ecological Engineering, 33(1), 68–82.

    Article  Google Scholar 

  11. Bindu, T., Sumi, M. M., & Ramasamy, E. V. (2010). Decontamination of water polluted by heavy metals with Taro (Colocasia esculenta) cultured in a hydroponic NFT system. The Environmentalist, 30(1), 35–44.

    Article  Google Scholar 

  12. BIS. (2010). Indian standards for inland disposal of treated water- specification (BIS 10500: 2010); available online at http://www.bis.org.in/.

  13. Brown, P. H., Cakmak, I., & Zhang, Q. (1993). Form and function of zinc plants. In Zinc in soils and plants (pp. 93–106). Dordrecht: Springer.

    Book  Google Scholar 

  14. Calheiros, C. S., Rangel, A. O., & Castro, P. M. (2008). Evaluation of different substrates to support the growth of Typha latifolia in constructed wetlands treating tannery wastewater over long-term operation. Bioresource Technology, 99(15), 6866–6877.

    Article  CAS  Google Scholar 

  15. Chang, J. J., Wu, S. Q., Dai, Y. R., Liang, W., & Wu, Z. B. (2012). Treatment performance of integrated vertical-flow constructed wetland plots for domestic wastewater. Ecological Engineering, 44, 152–159.

    Article  Google Scholar 

  16. Chayapan, P., Kruatrachue, M., Meetam, M., & Pokethitiyook, P. (2015). Phytoremediation potential of Cd and Zn by wetland plants, Colocasia esculenta L. Schott., Cyperus malaccensis Lam., and Typha angustifolia L. grown in hydroponics. Journal of Environmental Biology, 36(5), 1179–1183.

    CAS  Google Scholar 

  17. Chen, C., Zhao, T., Liu, R., & Luo, L. (2017). Performance of five plant species in removal of nitrogen and phosphorus from an experimental phytoremediation system in the Ningxia irrigation area. Environmental Monitoring and Assessment, 189(10), 497.

    Article  CAS  Google Scholar 

  18. Clemens, S. (2001). Molecular mechanisms of plant metal tolerance and homeostasis. Planta, 212(4), 475–486.

    Article  CAS  Google Scholar 

  19. Clemens, S. (2006). Toxic metal accumulation, responses to exposure and mechanisms of tolerance in plants. Biochimie, 88(11), 1707–1719.

    Article  CAS  Google Scholar 

  20. Clemens, S., Palmgren, M. G., & Krämer, U. (2002). A long way ahead: understanding and engineering plant metal accumulation. Trends in Plant Science, 7(7), 309–315.

    Article  CAS  Google Scholar 

  21. CPCB. (2009). Status of water supply, waste water generation and treatment in class-I cities and Class-II town of India. Control of urban pollution series: CUPS/70 /2009-10. New Delhi: New Delhi CPCB, Ministry of Environment and Forests. Govt. of India.

  22. Das, M., & Maiti, S. K. (2007). Metal accumulation in A. baccifera growing naturally on abandoned copper tailings pond. Environmental Monitoring and Assessment, 127(1–3), 119–125.

    Article  CAS  Google Scholar 

  23. Das, S., Goswami, S., & Talukdar, A. D. (2014). A study on cadmium phytoremediation potential of water lettuce, Pistia stratiotes L. Bulletin of Environmental Contamination and Toxicology, 92(2), 169–174.

    Article  CAS  Google Scholar 

  24. Davies, L. C., Cabrita, G. J. M., Ferreira, R. A., Carias, C. C., Novais, J. M., & Martins-Dias, S. (2009). Integrated study of the role of Phragmites australis in azo-dye treatment in a constructed wetland: from pilot to molecular scale. Ecological Engineering, 35(6), 961–970.

    Article  Google Scholar 

  25. Day, P. R. (1965). Particle fractionation and particle-size analysis. In C. A. Black, D. D. Evans, L. E. Ensminger, J. L. White, & F. E. Clark (Eds.), Methods of soil analysis (pp. 545–567). Madison: American Society of Agronomy. Inc., Publishers.

    Google Scholar 

  26. Dhote, S., & Dixit, S. (2009). Water quality improvement through macrophytes—a review. Environmental Monitoring and Assessment, 152(1–4), 149–153.

    Article  CAS  Google Scholar 

  27. Gambrell, R. P. (1994). Trace and toxic metals in wetlands—a review. Journal of Environmental Quality, 23, 883–891.

    Article  CAS  Google Scholar 

  28. Gao, J., Zhang, J., Ma, N., Wang, W., Ma, C., & Zhang, R. (2015). Cadmium removal capability and growth characteristics of Iris sibirica in subsurface vertical flow constructed wetlands. Ecological Engineering, 84, 443–450.

    Article  Google Scholar 

  29. Gbogbo, F., & Otoo, S. D. (2015). The concentrations of five heavy metals in components of an economically important urban coastal wetland in Ghana: public health and phytoremediation implications. Environmental Monitoring and Assessment, 187(10), 655.

    Article  CAS  Google Scholar 

  30. Ha, N. T. H., Sakakibara, M., & Sano, S. (2011). Accumulation of indium and other heavy metals by Eleocharis acicularis: an option for phytoremediation and phytomining. Bioresource Technology, 102(3), 2228–2234.

    Article  CAS  Google Scholar 

  31. Hall, J. L. (2002). Cellular mechanisms for heavy metal detoxification and tolerance. Journal of Experimental Botany, 53(366), 1–11.

    Article  CAS  Google Scholar 

  32. Hargreaves, A. J., Constantino, C., Dotro, G., Cartmell, E., & Campo, P. (2018). Fate and removal of metals in municipal wastewater treatment: a review. Environmental Technology Reviews, 7(1), 1–18.

    Article  CAS  Google Scholar 

  33. Jacob, D. L., & Otte, M. L. (2003). Conflicting processes in the wetland plant rhizosphere: metal retention or mobilization? Water Air Soil Pollution: Focus, 3(1), 91–104.

    Article  CAS  Google Scholar 

  34. Justin, M. Z., & Zupančič, M. (2009). Combined purification and reuse of landfill leachate by constructed wetland and irrigation of grass and willows. Desalination, 246(1), 157–168.

    Article  CAS  Google Scholar 

  35. Juwarker, A. S., Oke, B., Juwarkar, A., & Patnaik, S. M. (1995). Domestic wastewater treatment through constructed wetland in India. Water Science Technology, 32(3), 291–294.

    Article  Google Scholar 

  36. Kabata-Pendias, A. (2010). Trace elements in soils and plants (Fourth ed.). Boca Raton: CRC Press.

  37. Krupa, Z., Öquist, G., & Huner, N. (1993). The effects of cadmium on photosynthesis of Phaseolus vulgaris—a fluorescence analysis. Physiologia Plantarum, 88(4), 626–630.

    Article  CAS  Google Scholar 

  38. Kumar, V., & Chopra, A. K. (2018). Phytoremediation potential of water caltrop (Trapa natans L.) using municipal wastewater of the activated sludge process-based municipal wastewater treatment plant. Environmental Technology, 39(1), 12–23.

    Article  CAS  Google Scholar 

  39. Kumar, D., Asolekar, S. R., & Sharma, S. K. (2015). Post-treatment and reuse of secondary effluents using natural treatment systems: the Indian practices. Environmental Monitoring and Assessment, 187(10), 612.

    Article  CAS  Google Scholar 

  40. Kumari, M., & Tripathi, B. D. (2015a). Effect of Phragmites australis and Typha latifolia on biofiltration of heavy metals from secondary treated effluent. International journal of Environmental Science and Technology, 12(3), 1029–1038.

    Article  CAS  Google Scholar 

  41. Kumari, M., & Tripathi, B. D. (2015b). Efficiency of Phragmites australis and Typha latifolia for heavy metal removal from wastewater. Ecotoxicology and Environmental Safety, 112, 80–86.

    Article  CAS  Google Scholar 

  42. Lasat, M. M., Pence, N. S., Garvin, D. F., Ebbs, S. D., & Kochian, L. V. (2000). Molecular physiology of zinc transport in the Zn hyperaccumulator Thlaspi caerulescens. Journal of Experimental Botany, 51(342), 71–79.

    Article  CAS  Google Scholar 

  43. Lombi, E., Tearall, K. L., Howarth, J. R., Zhao, F. J., Hawkesford, M. J., & McGrath, S. P. (2002). Influence of iron status on cadmium and zinc uptake by different ecotypes of the hyperaccumulator Thlaspi caerulescens. Plant Physiology, 128(4), 1359–1367.

    Article  CAS  Google Scholar 

  44. Luis, G., Rubio, C., González-Weller, D., Gutiérrez, A. J., Revert, C., & Hardisson, A. (2011). Comparative study of the mineral composition of several varieties of potatoes (Solanum tuberosum L.) from different countries cultivated in Canary Islands (Spain). International Journal of Food Science & Technology, 46(4), 774–780.

    Article  CAS  Google Scholar 

  45. Madera-Parra, C. A., Peña-Salamanca, E. J., Peña, M. R., Rousseau, D. P. L., & Lens, P. N. L. (2015). Phytoremediation of landfill leachate with Colocasia esculenta, Gynerum sagittatum and Heliconia psittacorum in constructed wetlands. International Journal of Phytoremediation, 17(1), 16–24.

    Article  CAS  Google Scholar 

  46. Maiti, S. K., & Nandhini, S. (2006). Bioavailability of metals in fly ash and their bioaccumulation in naturally occurring vegetation: a pilot scale study. Environmental Monitoring and Assessment, 116(1–3), 263–273.

    Article  CAS  Google Scholar 

  47. Maiti, S. K., & Rana, V. (2017). Assessment of heavy metals contamination in reclaimed mine soil and their accumulation and distribution in Eucalyptus hybrid. Bulletin of Environmental Contamination and Toxicology, 98(1), 97–104.

    Article  CAS  Google Scholar 

  48. Marschner, H. (2011). Marschner’s mineral nutrition of higher plants. London: Academic press.

    Google Scholar 

  49. Massoud, M. A., Tarhini, A., & Nasr, J. A. (2009). Decentralized approaches to wastewater treatment and management: applicability in developing countries. Journal of Environmental Management, 90(1), 652–659.

    Article  Google Scholar 

  50. Matagi, S. V., Swai, D., & Mugabe, R. (1998). A review of heavy metal removal mechanisms in wetlands. African Journal of Tropical Hydrobiology and Fisheries, 8(1), 13–25.

    Article  Google Scholar 

  51. Mojiri, A., Ahmad, Z., Tajuddin, R. M., Arshad, M. F., & Gholami, A. (2017). Ammonia, phosphate, phenol, and copper (II) removal from aqueous solution by subsurface and surface flow constructed wetland. Environmental Monitoring and Assessment, 189(7), 337.

    Article  CAS  Google Scholar 

  52. Ng, Y. S., & Chan, D. J. C. (2017). Phytoremediation capabilities of Spirodela polyrhiza, Salvinia molesta and Lemna sp. in synthetic wastewater: a comparative study. International Journal of Phytoremediation. https://doi.org/10.1080/15226514.2017.1375895.

  53. Olguín, E. J., Sánchez-Galván, G., González-Portela, R. E., & López-Vela, M. (2008). Constructed wetland mesocosms for the treatment of diluted sugarcane molasses stillage from ethanol production using Pontederia sagittata. Water Research, 42(14), 3659–3666.

    Article  CAS  Google Scholar 

  54. Padmavathiamma, P. K., & Li, L. Y. (2007). Phytoremediation technology: hyper-accumulation metals in plants. Water, Air, and Soil Pollution, 184(1–4), 105–126.

    Article  CAS  Google Scholar 

  55. Pan, W., Wu, C., Xue, S., & Hartley, W. (2014). Arsenic dynamics in the rhizosphere and its sequestration on rice roots as affected by root oxidation. Journal of Environmental Sciences, 26(4), 892–899.

    Article  CAS  Google Scholar 

  56. Rai, U. N., Upadhyay, A. K., Singh, N. K., Dwivedi, S., & Tripathi, R. D. (2015). Seasonal applicability of horizontal sub-surface flow constructed wetland for trace elements and nutrient removal from urban wastes to conserve Ganga River water quality at Haridwar, India. Ecological Engineering, 81, 115–122.

    Article  Google Scholar 

  57. Rana, V., & Maiti, S. K. (2018). Differential distribution of metals in tree tissues growing on reclaimed coal mine overburden dumps, Jharia coal field (India). Environmental Science and Pollution Research, 25(10), 9745–9758.

    Article  CAS  Google Scholar 

  58. Reddy, M. V., Babu, K. S., Balaram, V., & Satyanarayanan, M. (2012). Assessment of the effects of municipal sewage, immersed idols and boating on the heavy metal and other elemental pollution of surface water of the eutrophic Hussainsagar Lake (Hyderabad, India). Environmental Monitoring and Assessment, 184(4), 1991–2000.

    Article  CAS  Google Scholar 

  59. Shah, K., & Nongkynrih, J. M. (2007). Metal hyperaccumulation and bioremediation. Biologia Plantarum, 51(4), 618–634.

    Article  CAS  Google Scholar 

  60. Shanker, A. K., Cervantes, C., Loza-Tavera, H., & Avudainayagam, S. (2005). Chromium toxicity in plants. Environment International, 31(5), 739–753.

    Article  CAS  Google Scholar 

  61. Stottmeister, U., Wießner, A., Kuschk, P., Kappelmeyer, U., Kästner, M., Bederski, O., Müller, R. A., & Moormann, H. (2003). Effects of plants and microorganisms in constructed wetlands for wastewater treatment. Biotechnology Advances, 22(1–2), 93–117.

    Article  CAS  Google Scholar 

  62. Upadhyay, A. R., Mishra, V. K., Pandey, S. K., & Tripathi, B. D. (2007). Biofiltration of secondary treated municipal wastewater in a tropical city. Ecological Engineering, 30(1), 9–15.

    Article  Google Scholar 

  63. Vymazal, J. (2005). Horizontal sub-surface flow and hybrid constructed wetlands systems for wastewater treatment. Ecological Engineering, 25(5), 478–490.

    Article  Google Scholar 

  64. Vymazal, J. (2011). Plants used in constructed wetlands with horizontal subsurface flow: a review. Hydrobiologia, 674(1), 133–156.

    Article  CAS  Google Scholar 

  65. Vymazal, J. (2013). Emergent plants used in free water surface constructed wetlands: a review. Ecological Engineering, 61, 582–592.

    Article  Google Scholar 

  66. Weis, J. S., & Weis, P. (2004). Metal uptake, transport and release by wetland plants: implications for phytoremediation and restoration. Environment International, 30(5), 685–700.

    Article  CAS  Google Scholar 

  67. Yadav, A. K., Abbassi, R., Kumar, N., Satya, S., Sreekrishnan, T. R., & Mishra, B. K. (2012). The removal of heavy metals in wetland microcosms: effects of bed depth, plant species, and metal mobility. Chemical Engineering Journal, 211, 501–507.

    Article  CAS  Google Scholar 

  68. Yang, X., Feng, Y., He, Z., & Stoffella, P. J. (2005). Molecular mechanisms of heavy metal hyperaccumulation and phytoremediation. Journal of Trace Elements in Medicine and Biology, 18(4), 339–353.

    Article  CAS  Google Scholar 

  69. Ye, F., & Li, Y. (2009). Enhancement of nitrogen removal in towery hybrid constructed wetland to treat domestic wastewater for small rural communities. Ecological Engineering, 35(7), 1043–1050.

    Article  Google Scholar 

  70. You, S. H., Zhang, X. H., Liu, J., Zhu, Y. N., & Gu, C. (2014). Feasibility of constructed wetland planted with Leersia hexandra Swartz for removing Cr, Cu and Ni from electroplating wastewater. Environmental Technology, 35(2), 187–194.

    Article  CAS  Google Scholar 

  71. Zhang, D. Q., Hua, T., Gersberg, R. M., Zhu, J., Ng, W. J., & Tan, S. K. (2012). Fate of diclofenac in wetland mesocosms planted with Scirpus validus. Ecological Engineering, 49, 59–64.

    Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Subodh Kumar Maiti.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Rana, V., Maiti, S.K. Municipal wastewater treatment potential and metal accumulation strategies of Colocasia esculenta (L.) Schott and Typha latifolia L. in a constructed wetland. Environ Monit Assess 190, 328 (2018). https://doi.org/10.1007/s10661-018-6705-4

Download citation

Keywords

  • Phytoremediation
  • Bioconcentration factor
  • Translocation factor
  • Metal mass balance
  • Chemical oxygen demand
  • Nitrogen