Skip to main content
Log in

Interannual variability in Dinophysis spp. abundance and toxin accumulation in farmed mussels (Perna perna) in a subtropical estuary

  • Published:
Environmental Monitoring and Assessment Aims and scope Submit manuscript

Abstract

This study evaluated an 8-year dataset (2007 to 2015, except 2008) in the attempt to identify the most susceptible periods for the occurrence of diarrheic shellfish poisoning (DSP) episodes associated with the presence of toxigenic dinoflagellates, Dinophysis spp., in the mussel farming area of Babitonga Bay (southern Brazil). Dinophysis acuminata complex was the most frequent (present in 66% of the samples) and abundant (max. 4100 cells L−1) taxon, followed by D. caudata (14%; max. 640 cells L−1) and D. tripos (0.9%; max. 50 cells L−1). There was a marked onset of the annual rise in Dinophysis spp. abundance during weeks 21–25 (early winter) of each year, followed by a second peak on week 35 (spring). Mussel (Perna perna) samples usually started testing positive in DSP mouse bioassays (MBA) in late winter. Positive results were more frequent in 2007 and 2011 when the mean D. acuminata complex abundance was ~ 500 cells L−1. Although positive DSP-MBA results were observed in only 11% of the samples during the studied period, the toxin okadaic acid (OA) was present in 90% of the analyzed mussels (max. 264 μg kg−1). MBA results were positive when D. acuminata complex cell densities exceed 1200 ± 300 cells L−1, while trace toxin amounts could be detected at cell densities as low as 150 ± 50 cells L−1 (free OA) to 200 ± 100 cells L−1 (conjugated OA). Low salinity and the meteorological conditions triggered by La Niña events were the main factors associated with both Dinophysis abundance and OA accumulation in mussels.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Ajani, P., Larsson, M. E., Rubio, A., Bush, S., Brett, S., & Farrell, H. (2016). Modelling bloom formation of the toxic dinoflagellates Dinophysis acuminata and Dinophysis caudata in a highly modified estuary, south eastern Australia. Estuarine, Coastal and Shelf Science, 183, 95–106. https://doi.org/10.1016/j.ecss.2016.10.020.

    Article  CAS  Google Scholar 

  • Alves-de-Souza, C., Varela, D., Contreras, C., de La Iglesia, P., Fernández, P., Hipp, B., et al. (2014). Seasonal variability of Dinophysis spp. and Protoceratium reticulatum associated to lipophilic shellfish toxins in a strongly stratified Chilean fjord. Deep-Sea Research Part II: Topical Studies in Oceanography, 101(March), 101, 152–162. https://doi.org/10.1016/j.dsr2.2013.01.014.

    Article  CAS  Google Scholar 

  • Anderson, D. M., Andersen, P., Bricelj, V. M., Cullen, J. J., & Rensel, J. E. J. (2001). Monitoring and management strategies for harmful algal blooms in coastal waters (Technical). Paris: Intergovernmental Oceanographic Commission of UNESCO.

  • Armi, Z., Turki, S., Trabelsi, E., Ceredi, A., Riccardi, E., & Milandri, A. (2012). Occurrence of diarrhetic shellfish poisoning (DSP) toxins in clams (Ruditapes decussatus) from Tunis north lagoon. Environmental Monitoring and Assessment, 184(8), 5085–5095. https://doi.org/10.1007/s10661-011-2324-z.

    Article  CAS  Google Scholar 

  • Artigas, M. L., Llebot, C., Ross, O. N., Neszi, N. Z., Rodellas, V., Garcia-Orellana, J., Masqué, P., Piera, J., Estrada, M., & Berdalet, E. (2014). Understanding the spatio-temporal variability of phytoplankton biomass distribution in a microtidal Mediterranean estuary. Deep Sea Research Part II: Topical Studies in Oceanography, 101, 180–192. https://doi.org/10.1016/j.dsr2.2014.01.006.

    Article  Google Scholar 

  • Basti, L., Uchida, H., Matsushima, R., Watanabe, R., Suzuki, T., Yamatogi, T., & Nagai, S. (2015). Influence of temperature on growth and production of pectenotoxin-2 by a monoclonal culture of Dinophysis caudata. Marine Drugs, 13(12), 7124–7137. https://doi.org/10.3390/md13127061.

    Article  CAS  Google Scholar 

  • Brahim, A. H. M. O. M. I. (2007). Review of the impact of harmful algae blooms and toxins on the world economy and human health. Egyptian Journal of Aquatic Research, 33(1), 210–223.

    Google Scholar 

  • Brandini, F. P., Silva, A. S., Silva, E. T., & Kolm, H. (2007). Sources of nutrients and seasonal dynamics of chlorophyll in the inner shelf off Paraná State—South Brazil bight. Journal of Coastal Research, 235, 1131–1140. https://doi.org/10.2112/04-0360.1.

    Article  Google Scholar 

  • BRASIL (2012). Instrução Normativa interministerial 7 de 8 de maio de 2012 Brasília, Brasil.

  • Bulgakov, N. P., & Lomakin, P. D. (2002). Geostrophic circulation of waters in the South Atlantic Ocean and its seasonal variability. Physical Oceanography, 12(3), 156–162.

    Article  Google Scholar 

  • Carstensen, J., Klais, R., & Cloern, J. E. (2015). Phytoplankton blooms in estuarine and coastal waters: seasonal patterns and key species. Estuarine, Coastal and Shelf Science, 162(May), 98–109. https://doi.org/10.1016/j.ecss.2015.05.005.

    Article  Google Scholar 

  • Cloern, J. E. (1987). Turbidity as a control on phytoplankton biomass and productivity in estuaries. Continental Shelf Research, 7(11–12), 1367–1381. https://doi.org/10.1016/0278-4343(87)90042-2.

    Article  Google Scholar 

  • Cremer, M. J. (2006). O Estuário da Baía da Bibitonga. In M. J. Cremer, P. R. D. Morales, & T. M. N. Oliveira (Eds.), Diagnoóstico Ambiental da Baía da Babitonga (pp. 15–19). Joinville: UNIVILLE.

    Google Scholar 

  • Díaz, P. A., Ruiz-Villarreal, M., Pazos, Y., Moita, T., & Reguera, B. (2016). Climate variability and Dinophysis acuta blooms in an upwelling system. Harmful Algae, 53, 145–159. https://doi.org/10.1016/j.hal.2015.11.007.

    Article  Google Scholar 

  • Díaz, P. a., Reguera, B., Ruiz-Villarreal, M., Pazos, Y., Velo-Suárez, L., Berger, H., & Sourisseau, M. (2013). Climate variability and oceanographic settings associated with interannual variability in the initiation of Dinophysis acuminata blooms. Marine Drugs, 11(8), 2964–2981. https://doi.org/10.3390/md11082964.

    Article  Google Scholar 

  • Díaz, P., Molinet, C., Cáceres, M. a., & Valle-Levinson, A. (2011). Seasonal and intratidal distribution of Dinophysis spp. in a Chilean fjord. Harmful Algae, 10(2), 155–164. https://doi.org/10.1016/j.hal.2010.09.001.

    Article  Google Scholar 

  • Draisci, R., Croci, L., Giannetti, L., Cozzi, L., Lucentini, L., De Medici, D., & Stacchini, A. (1994). Comparison of mouse bioassay, HPLC and enzyme immunoassay methods for determining diarrhetic shellfish poisoning toxins in mussels. Toxicon, 32(11), 1379–1384 http://www.ncbi.nlm.nih.gov/pubmed/7886696.

    Article  CAS  Google Scholar 

  • Eriksen, R. (2016). IOC taxonomic training in identification and enumeration of harmful algae. Report to Safefish on enumeration methods for marine phytoplankton Ruth Eriksen translating nature into knowledge, (November 2015). doi:https://doi.org/10.13140/RG.2.1.3696.0724

  • EURLM. (2009). EU-harmonised standard operating procedure for determination of OA- group toxins by LC-MS/MS, 1–14.

  • EURLMB. (2015). EU-harmonised standard operating procedure for determination of Lipophilic marine biotoxins in molluscs by LC-MS/MS, version 5, 1–31. doi:www.aesan.msps.es/en/CRLMB/ web/home.shtml.

  • Fernandes, L. F., Cavalcante, K. P., Proença, L. a. D. O., & Schramm, M. a. (2013). Blooms of Pseudo-nitzschia pseudodelicatissima and P. calliantha, and associated domoic acid accumulation in shellfish from the South Brazilian coast. Diatom Research, 28(4), 381–393. https://doi.org/10.1080/0269249X.2013.821424.

    Article  Google Scholar 

  • Ferreira, J. F., Besen, K., Wormsbecher, A. G., & Santos, R. F. (2004). Physical-chemical parameters of seawater mollusc culture sites in Santa Catarina-Brazil. Journal of Coastal Research, 39, 1122–1126.

    Google Scholar 

  • Ferreira, J. G., Wolff, W. J., Simas, T. C., & Bricker, S. B. (2005). Does biodiversity of estuarine phytoplankton depend on hydrology? Ecological Modelling, 187(4), 513–523. https://doi.org/10.1016/j.ecolmodel.2005.03.013.

    Article  Google Scholar 

  • Fux, E., Smith, J. L., Tong, M., Guzmán, L., & Anderson, D. M. (2011). Toxin profiles of five geographical isolates of Dinophysis spp. from North and South America. Toxicon, 57(2), 275–287. https://doi.org/10.1016/j.toxicon.2010.12.002.

    Article  CAS  Google Scholar 

  • Haraguchi, L., Carstensen, J., Abreu, P. C., & Odebrecht, C. (2015). Long-term changes of the phytoplankton community and biomass in the subtropical shallow Patos Lagoon Estuary, Brazil. Estuarine, Coastal and Shelf Science, 162, 76–87. https://doi.org/10.1016/j.ecss.2015.03.007.

    Article  CAS  Google Scholar 

  • Haraguchi, L., & Odebrecht, C. (2010). Dinophysiales (Dinophyceae) no extremo Sul do Brasil (inverno de 2005, verão de 2007). Biota Neotropica, 10(3), 101–114.

    Article  Google Scholar 

  • Hattenrath-Lehmann, T. K., Marcoval, M. A., Mittlesdorf, H., Goleski, J. A., Wang, Z., Haynes, B., Morton, S. L., & Gobler, C. J. (2015). Nitrogenous nutrients promote the growth and toxicity of Dinophysis acuminata during estuarine bloom events. PLoS One, 10(4), e0124148. https://doi.org/10.1371/journal.pone.0124148.

    Article  CAS  Google Scholar 

  • Higman, W. A., Algoet, M., Stubbs, B., & Lees, D. (2007). Overview of developments of the algal biotoxin monitoring programme in England, Scotland and Wales. In Proceedings of the 6th International Conference on Molluscan Shellfish Safety (pp. 41–45).

  • INMET. (2017). BDMEP—Banco de Dados Meteorológicos para Ensino e Pesquisa. Intituto Nacional de Meteorologia. http://www.inmet.gov.br/portal/index.php?r=bdmep/bdmep . Accessed 23 January 2017.

  • Islabão, C. A., & Odebrecht, C. (2011). Dinoflagelados (Peridiniales, Prorocentrales) do microplâncton na plataforma continental e talude do extremo sul do Brasil (inverno 2005, verão 2007). Biota Neotropica, 11(3), 153–166. https://doi.org/10.1590/S1676-06032011000300012.

    Article  Google Scholar 

  • Ito, E., Suzuki, T., Oshima, Y., & Yasumoto, T. (2008). Studies of diarrhetic activity on pectenotoxin-6 in the mouse and rat. Toxicon, 51(4), 707–716. https://doi.org/10.1016/j.toxicon.2007.12.006.

    Article  CAS  Google Scholar 

  • Jacomel, B., & Campos, L. M. D. S. (2014). Produção sustentável e controlada de ostras: ações em Santa Catarina (Brasil) rumo aos padrões internacionais de comercialização. Revista de Gestão Costeira Integrada, 14(3), 501–515. https://doi.org/10.5894/rgci503.

    Article  Google Scholar 

  • Jiang, T., Xu, Y., Li, Y., Qi, Y., Jiang, T., Wu, F., & Zhang, F. (2014). Dinophysis caudata generated lipophilic shellfish toxins in bivalves from the Nanji Islands, East China Sea. Chinese Journal of Oceanology and Limnology, 32(1), 130–139. https://doi.org/10.1007/s00343-014-2290-8.

    Article  CAS  Google Scholar 

  • Lee, J.-S., Igarashi, T., Fraga, S., Dahl, E., Hovgaard, P., & Yasumoto, T. (1989). Determination of diarrhetic shellfish toxins in various dinoflagellate species. Journal of Applied Phycology, 1, 147–152.

    Article  Google Scholar 

  • Lewitus, A. J., Horner, R. a., Caron, D.a., Garcia-Mendoza, E., Hickey, B. M., Hunter, M., et al. (2012). Harmful algal blooms along the North American west coast region: history, trends, causes, and impacts. Harmful Algae, 19, 133–159. doi:https://doi.org/10.1016/j.hal.2012.06.009.

  • Li, A., Ma, J., Cao, J., & McCarron, P. (2012). Toxins in mussels (Mytilus galloprovincialis) associated with diarrhetic shellfish poisoning episodes in China. Toxicon, 60(3), 420–425. https://doi.org/10.1016/j.toxicon.2012.04.339.

    Article  CAS  Google Scholar 

  • Li, A., Sun, G., Qiu, J., & Fan, L. (2015). Lipophilic shellfish toxins in Dinophysis caudata picked cells and in shellfish from the East China Sea. Environmental Science and Pollution Research, 22(4), 3116–3126. https://doi.org/10.1007/s11356-014-3595-z.

    Article  CAS  Google Scholar 

  • Mafra, L. L., Ribas, T., Alves, T. P., Proença, L. A. O., Schramm, M. A., Uchida, H., & Suzuki, T. (2015). Differential okadaic acid accumulation and detoxification by oysters and mussels during natural and simulated Dinophysis blooms. Fisheries Science, 81(4), 749–762. https://doi.org/10.1007/s12562-015-0882-7.

    Article  CAS  Google Scholar 

  • Mafra, L. L., Tavares, C. P. d. S., & Schramm, M. A. (2014). Diarrheic toxins in field-sampled and cultivated Dinophysis spp. cells from southern Brazil. Journal of Applied Phycology, 26(4), 1727–1739. https://doi.org/10.1007/s10811-013-0219-9.

    Article  CAS  Google Scholar 

  • Martínez, A., Nacional, D., Acuáticos, D. R., & Fabre, A. (2017). Intensification of marine dinoflagellates blooms in Uruguay Intensificación de floraciones de dinoflagelados marinos en Uruguay intensification of marine dinoflagellates blooms in Uruguay. Revista Del Laboratorio Tecnológico Del Uruguay, 13(August), 19–25.

    Google Scholar 

  • Martínez, A., & Ortega, L. (2007). Seasonal trends in phytoplankton biomass over the Uruguayan Shelf. Continental Shelf Research, 27(12), 1747–1758. https://doi.org/10.1016/j.csr.2007.02.006.

    Article  Google Scholar 

  • Moita, M. T., Pazos, Y., Rocha, C., Nolasco, R., & Oliveira, P. B. (2016). Toward predicting Dinophysis blooms off NW Iberia: a decade of events. Harmful Algae, 53, 17–32. https://doi.org/10.1016/j.hal.2015.12.002.

    Article  Google Scholar 

  • Möller, O. O., Piola, A. R., Freitas, A. C., & Campos, E. J. D. (2008). The effects of river discharge and seasonal winds on the shelf off southeastern South America. Continental Shelf Research, 28(13), 1607–1624. https://doi.org/10.1016/j.csr.2008.03.012.

    Article  Google Scholar 

  • Morgan, K. L., Larkin, S. L., & Adams, C. M. (2009). Firm-level economic effects of HABS: a tool for business loss assessment. Harmful Algae, 8(2), 212–218. https://doi.org/10.1016/j.hal.2008.05.002.

    Article  Google Scholar 

  • Muelbert, J. H., Acha, M., Mianzan, H., Guerrero, R., Reta, R., Braga, E. S., Garcia, V. M. T., Berasategui, A., Gomez-Erache, M., & Ramírez, F. (2008). Biological, physical and chemical properties at the Subtropical Shelf Front Zone in the SW Atlantic Continental Shelf. Continental Shelf Research, 28(13), 1662–1673. https://doi.org/10.1016/j.csr.2007.08.011.

    Article  Google Scholar 

  • Nelan, B. (2007). The role of shellfish testing in the New South Wales oyster industry. Proceedings of the 6th International Conference on Molluscan Shellfish Safety, 344–346.

  • NOAA. (2017). National weather service. Center for Weather and Climate Prediction. http://www.cpc.ncep.noaa.gov/products/analysis_monitoring/ensostuff/ensoyears.shtml. Accessed 23 January 2017.

  • Odebrecht, C., & Garcia, V. M. T. (1998). Ambientes costeiros e marinhos e sua biota: fitoplâncton. In Seeliger U., Odebrecht C., & Castello J. (Eds.), Os ecossistemas costeiro e marinho do extremo sul do Brasil. (I., pp. 117–121). Rio Grande: Ecoscientia.

  • Omachi, C. Y., Tamanaha, M. d. S., & Proença, L. A. d. O. (2007). Bloom of Alexandrium fraterculus in coastal waters off Itajaí, SC, Southern Brazil. Brazilian Journal of Oceanography, 55(1), 57–61.

    Article  Google Scholar 

  • Owen, R. W., Gianesella-galvão, S. F., & Kutner, M. B. B. (1992). Discrete, subsurface layers of the autotrophic ciliate Mesodinium rubrum off Brazil. Journal of Plankton Research, 14(1), 97–105. https://doi.org/10.1093/plankt/14.1.97.

    Article  Google Scholar 

  • Piola, A. R., Romero, S. I., & Zajaczkovski, U. (2008). Space–time variability of the Plata plume inferred from ocean color. Continental Shelf Research, 28(13), 1556–1567. https://doi.org/10.1016/j.csr.2007.02.013.

    Article  Google Scholar 

  • Procopiak, L. K., Fernandes, L. F., & Moreira-Filho, H. (2006). Diatomáceas (Bacillariophyta) marinhas e estuarinas do Paraná, Sul do Brasil: lista de espécies com ênfase em espécies nocivas. Biota Neotropica, 6(3). https://doi.org/10.1590/S1676-06032006000300013.

  • Proença, L. A. d. O. (2004). A red water caused by Mesodinium rubrum on the coast of Santa Catarina, southern Brazil. Brazilian Journal of Oceanography, 52(2), 153–161 http://www.scielo.br/scielo.php?pid=S1679-87592004000200007&script=sci_arttext&tlng=es.

    Article  Google Scholar 

  • Proença, L. A. d. O., Fonseca, R. S., & Pinto, T. d. O. (2011). Microalgas em área de cultivo do litoral de Santa Catarina. In Rima.

    Google Scholar 

  • de Proença, L. A., O., Schramm, M. A., Alves, T. P., & Piola, A. R. (2017). The extraordinary 2016 autumn DSP outbreak in Santa Catharina, South Brazil, explained by large-scale oceanographic processes. 17th International Conference of Harmful Algae, Florianópolis-Brazil., 212.

  • Proença, L. A. d. O., Schramm, M. A., Tamanaha, M. S., & Alves, T. P. (2007). Diarrhoetic shellfish poisoning (DSP) outbreak in subtropical Southwest Atlantic. Harmful Algae News, 33, 19–20.

    Google Scholar 

  • Proença, L. A. O., Schmitt, F., Guimarães, S. P., & Rörig, L. R. (1999). Análise de toxinas diarréicas em duas espécies de Prorocentrum (DINOPHYCEAE) isoladas em área de cultivo de moluscos. Brazilian Journal of Aquatic Sciences and Technology, 3, 41–45.

    Article  Google Scholar 

  • Raho, N., Pizarro, G., Escalera, L., Reguera, B., & Marín, I. (2008). Morphology, toxin composition and molecular analysis of Dinophysis ovum Schütt, a dinoflagellate of the “Dinophysis acuminata complex”. Harmful Algae, 7(6), 839–848. https://doi.org/10.1016/j.hal.2008.04.006.

    Article  CAS  Google Scholar 

  • Reguera, B., Riobó, P., Rodríguez, F., Díaz, P. A., Pizarro, G., Paz, B., et al. (2014). Dinophysis toxins: causative organisms, distribution and fate in shellfish. Marine Drugs, 12(1), 394–461. https://doi.org/10.3390/md12010394.

    Article  CAS  Google Scholar 

  • Reguera, B., Velo-Suárez, L., Raine, R., & Park, M. G. (2012). Harmful Dinophysis species: a review. Harmful Algae, 14, 87–106. https://doi.org/10.1016/j.hal.2011.10.016.

    Article  Google Scholar 

  • Santos, A. A. dos, & Costa, S. W. da (2015). Síntese Informativa da Maricultura 2014. Empresa de Pesquisa Agropecuária e Extensão Rural de Santa Catarina (Epagri). Florianópolis-SC.

  • Sar, E. A., Sunesen, I., Goya, A. B., Lavigne, A. S., Tapia, E., García, C., & Lagos, N. (2012). First report of diarrheic shellfish toxins in mollusks from Buenos Aires Province (Argentina) associated with Dinophysis spp.: evidence of okadaic acid, dinophysistoxin-1 and their acyl-derivates. Biology Society Argent Botany, 47(0373-580), 5–14.

    Google Scholar 

  • Schmitt, F., & Proença, L. A. (2000). Ocorrência de Dinoflagelados do Gênero Dinophysis (Enrenberg, 1839) na Enseada de Cabeçudas (Verão e Outono de 1999). Brazilian Journal of Aquatic Sciences and Technology, 4(4), 49–59.

    Google Scholar 

  • Severov, D. (2004). SST anomaly variability in Southwestern Atlantic and El Niño/Southern oscillation. Advances in Space Research, 33(3), 343–347. https://doi.org/10.1016/S0273-1177(03)00479-4.

    Article  Google Scholar 

  • Silke, J. (2008). What makes an effective shellfish toxin monitoring programme? In Proceedings of the 6th International Conference on Molluscan Shellfish Safety (pp. 201–209).

  • Smayda, T. J. (2008). Complexity in the eutrophication–harmful algal bloom relationship, with comment on the importance of grazing. Harmful Algae, 8(1), 140–151. https://doi.org/10.1016/j.hal.2008.08.018.

    Article  CAS  Google Scholar 

  • Sosa, S., Ardizzone, M., Beltramo, D., Vita, F., Dell’Ovo, V., Barreras, A., et al. (2013). Repeated oral co-exposure to yessotoxin and okadaic acid: a short term toxicity study in mice. Toxicon, 76, 94–102. https://doi.org/10.1016/j.toxicon.2013.09.014.

    Article  CAS  Google Scholar 

  • Sunesen, I., Lavigne, A. S., Goys, A., & Sar, E. A. (2014). Episodios de toxicidad en moluscos de aguas marinas costeras de la Provincia de Buenos Aires ( Argentina ) asociados a algas toxígenas ( marzo de 2008-marzo de 2013 ). Boletín de la Sociedad Argentina de Botánica, 49(3), 327–339.

    Google Scholar 

  • Tavares, J. F., Proença, L. A. O., & Odebrecht, C. (2009). Assessing the harmful microalgae occurrence and temporal variation in a coastal aquaculture area, southern Brazil. Atlantica, 31(2), 129–144. https://doi.org/10.5088/atl.2009.31.2.129.

    Article  Google Scholar 

  • Tibiriçá, C. E. J. D. A., Fernandes, L. F., & Mafra Junior, L. L. (2015). Seasonal and spatial patterns of toxigenic species of Dinophysis and Pseudo-Nitzschia in a subtropical Brazilian estuary. Brazilian Journal of Oceanography, 63(1), 17–32. https://doi.org/10.1590/S1679-87592015071906301.

    Article  Google Scholar 

  • Trefault, N., Krock, B., Delherbe, N., Cembella, A., & Vásquez, M. (2011). Latitudinal transects in the southeastern Pacific Ocean reveal a diverse but patchy distribution of phycotoxins. Toxicon, 58(5), 389–397. https://doi.org/10.1016/j.toxicon.2011.07.006.

    Article  CAS  Google Scholar 

  • Truccolo, E. C., & Schettini, C. A. F. (1999). Marés astronômicas na baía da Babitonga, SC. Brazilian Journal Aquatic Science and Technology, 3, 57–66.

    Article  Google Scholar 

  • Turner, A. D., & Goya, A. B. (2015). Occurrence and profiles of lipophilic toxins in shellfish harvested from Argentina. Toxicon : official journal of the International Society on Toxinology, 102, 32–42. https://doi.org/10.1016/j.toxicon.2015.05.010.

    Article  CAS  Google Scholar 

  • Turner, A. D., & Goya, A. B. (2016). Comparison of four rapid test kits for the detection of okadaic acid-group toxins in bivalve shellfish from Argentina. Food Control, 59, 829–840. https://doi.org/10.1016/j.foodcont.2015.07.005.

    Article  CAS  Google Scholar 

  • Turrell, E. A., & Stobo, L. (2007). A comparison of the mouse bioassay with liquid chromatography-mass spectrometry for the detection of lipophilic toxins in shellfish from Scottish waters. Toxicon, 50(3), 442–447. https://doi.org/10.1016/j.toxicon.2007.04.002.

    Article  CAS  Google Scholar 

  • Vale, P., Botelho, M. J., Rodrigues, S. M., Gomes, S. S., & Sampayo, M. A. D. M. (2008). Two decades of marine biotoxin monitoring in bivalves from Portugal (1986–2006): a review of exposure assessment. Harmful Algae, 7(1), 11–25. https://doi.org/10.1016/j.hal.2007.05.002.

    Article  CAS  Google Scholar 

  • Velo-Suárez, L., González-Gil, S., Pazos, Y., & Reguera, B. (2014). The growth season of Dinophysis acuminata in an upwelling system embayment: a conceptual model based on in situ measurements. Deep Sea Research Part II: Topical Studies in Oceanography, 101, 141–151. https://doi.org/10.1016/j.dsr2.2013.03.033.

    Article  Google Scholar 

  • Vieira, A. C., Rubiolo, J. A., López-Alonso, H., Cifuentes, J. M., Alfonso, A., Bermúdez, R., et al. (2013). Oral toxicity of okadaic acid in mice: study of lethality, organ damage, distribution and effects on detoxifying gene expression. Toxins, 5(11), 2093–2108. https://doi.org/10.3390/toxins5112093.

    Article  CAS  Google Scholar 

  • Vieira, C. V., Filho, N. O. H., Bonetti, C. V. D. H. C., & Bonetti, J. (2008). Caracterização morfosedimentar e setorização do complexo estuarino da Baía da Babitonga/SC. Boletim Paranaense de Geociências, 62(63), 85–105.

    Google Scholar 

  • Villac, M. C., Cabral-Noronha, V. A. d. P., & Pinto, T. d. O. (2008). The phytoplankton biodiversity of the coast of the state of São Paulo, Brazil. Biota Neotropica, 8(3), 151–173. https://doi.org/10.1590/S1676-06032008000300015.

    Article  Google Scholar 

  • Villac, M. C., Melo, S., Menezes, M., & Tenenbaum, D. R. (2005). Pseudo-Nitzschia brasiliana (Bacillariophyceae), an opportunistic diatom on the coast of the state of Rio De Janeiro, Brazil. Atlantica, 27(2), 139–145.

    Google Scholar 

  • Villalobos, L. G., Santinelli, N., Sastre, V., Krock, B., & Esteves, J. L. (2015). Dinophysis species associated with diarrhetic shellfish poisoning episodes in north Patagonian gulfs (Chubut, Argentina). Journal of Shellfish Research, 34(3), 1141–1149. https://doi.org/10.2983/035.034.0339.

    Article  Google Scholar 

  • Whyte, C., Swan, S., & Davidson, K. (2014a). Changing wind patterns linked to unusually high Dinophysis blooms around the Shetland Islands, Scotland. Harmful Algae, 39, 365–373. https://doi.org/10.1016/j.hal.2014.09.006.

    Article  Google Scholar 

  • Whyte, C., Swan, S., & Davidson, K. (2014b). Changing wind patterns linked to unusually high Dinophysis blooms around the Shetland Islands, Scotland. Harmful Algae, 39(October), 365–373. https://doi.org/10.1016/j.hal.2014.09.006.

    Article  Google Scholar 

  • Wong, K. T. M., Lee, J. H. W., & Harrison, P. J. (2009). Forecasting of environmental risk maps of coastal algal blooms. Harmful Algae, 8(3), 407–420. https://doi.org/10.1016/j.hal.2008.09.001.

    Article  CAS  Google Scholar 

  • Yasumoto, T., Murata, M., Oshima, Y., Matsumoto, G. K., & Clardy, J. (1984). Diarrhetic shellfish poisoning. In E. P. Ragelis (Ed.), Seafood toxins, ACS Symposium Series, 262 (pp. 207–214). Washington, D.C.: American Chemical Society.

Download references

Acknowledgements

We wish to express our gratitude to several shellfish farmers from Santa Catarina State for their help with sampling, to the State and National regulatory agencies (EPAGRI, CIDASC, and MAPA) for sharing monitoring data, and especially to veterinarian Dr. Eduardo Cunha for his support and confidence that this study would contribute relevant information to the Brazilian aquaculture.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. P. Alves.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Alves, T.P., Schramm, M.A., Proença, L.A.O. et al. Interannual variability in Dinophysis spp. abundance and toxin accumulation in farmed mussels (Perna perna) in a subtropical estuary. Environ Monit Assess 190, 329 (2018). https://doi.org/10.1007/s10661-018-6699-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10661-018-6699-y

Keywords

Navigation