Skip to main content
Log in

Upstream flood pattern recognition based on downstream events

  • Published:
Environmental Monitoring and Assessment Aims and scope Submit manuscript

Abstract

Reverse stream flood routing determines the upstream hydrograph in a stream reach given the downstream hydrograph. The Muskingum model of flood routing involves parameters that govern the routed hydrograph. These parameters are herein estimated using simulation methods coupled with optimization tools to achieve optimized parameters. Different simulation methods are shown to perform unequally in the estimation of nonlinear Muskingum parameters. This paper presents two simulation methods for nonlinear Muskingum reverse flood routing: (1) Euler equations and (2) Runge-Kutta 4th order equations. Moreover, the generalized reduced gradient (GRG) is used as the optimization tool that minimized the sum of the squared deviations (SSQ) between observed and routed inflows in a benchmark flood routing problem. Results show the Runge-Kutta 4th order equations yield better routed hydrographs with smaller SSQ than obtained in previous research and with the first simulation method (Euler equations).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Chow, V. T. (1959). Open channel hydraulics. New York: McGraw-Hill.

    Google Scholar 

  • Chu, H. J., & Chang, L. C. (2009). Applying particle swarm optimization to parameter estimation of the nonlinear Muskingum model. Journal of Hydrologic Engineering, 14(9), 1024–1027.

    Article  Google Scholar 

  • Das, A. (2004). Parameter estimation for Muskingum models. Journal of Irrigation and Drainage Engineering, 130(2), 140–147.

    Article  Google Scholar 

  • Das, A. (2009). Reverse stream flow routing by using Muskingum models. Journal Sadhana, 34(3), 483–499.

    Article  Google Scholar 

  • Fallah-Mehdipour, E., Bozorg Haddad, O., Beygi, S., & Marino, M. A. (2011). Effect of utility function curvature of Young’s bargaining method on the design of WDNs. Water Resources Management, 25(9), 2197–2218.

    Article  Google Scholar 

  • Geem, Z. W. (2006). Parameter estimation for the nonlinear Muskingum model using BFGS technique. Journal of Irrigation and Drainage Engineering, 132(5), 474–478.

    Article  Google Scholar 

  • Geem, Z. W. (2011). Parameter estimation of the nonlinear Muskingum model using parameter-setting-free harmony search algorithm. Journal of Hydrologic Engineering, 16(8), 684–688.

    Article  Google Scholar 

  • Gill, M. A. (1978). Flood routing by Muskingum method. Journal of Hydrology, 36(3–4), 353–363.

    Article  Google Scholar 

  • Hamedi, F., Bozorg Haddad, O., Orouji, H., Fallah-Mehdipour, E., & Mariño, M. A. (2014). Discussion of “Parameter estimation of the nonlinear Muskingum flood-routing model uses a hybrid harmony search algorithm.” By H. Karahan, G. Gurarslan, and Z. W. Geem. Journal of Hydrologic Engineering, (in press, 19, 845–847.

    Article  Google Scholar 

  • Hydrologic Engineering Center (2010). River analysis system. US Corps of Engineers Hydrologic Engineering Center, Davis, California.

  • Kim, J. H., Geem, Z. W., & Kim, E. S. (2001). Parameter estimation of the nonlinear Muskingum model using harmony search. Journal of the American Water Resources Association, 37(5), 1131–1138.

    Article  Google Scholar 

  • Martin, J. (2013). Revisiting Frank-Wolfe: Projection-Free sparse convex optimization. Journal of Machine Learning Research: Workshop and Conference Proceedings, 28(1), 427–435.

    Google Scholar 

  • McCarthy, G. T. (1938). The unit hydrograph and flood routing. Proceedings of the Conference of North Atlantic Division, US Army Corps of Engineers, Rhode Island, USA.

  • Mohan, S. (1997). Parameter estimation of nonlinear Muskingum models using genetic algorithm. Journal of Hydraulic Engineering, 123(2), 137–142.

    Article  Google Scholar 

  • Orouji, H., Bozorg Haddad, O., Fallah-Mehdipour, E., & Mariño, M. A. (2013). Estimation of Muskingum parameter by meta-heuristic algorithms. Proceedings of the Institution of Civil Engineers: Water Management, 166(6), 315–324.

    Article  Google Scholar 

  • Tung, Y. K. (1985). River flood routing by nonlinear Muskingum method. Journal of Hydraulic Engineering, 111(12), 1147–1460.

    Article  Google Scholar 

  • Wilson, E. M. (1974). Engineering hydrology. Hampshir: MacMillan Educatin Ltd..

    Book  Google Scholar 

  • Xu, D., Qiu, L., & Chen, S. (2012). Estimation of nonlinear Muskingum model parameter using differential evolution. Journal of Hydrologic Engineering, 17(2), 348–353.

    Article  Google Scholar 

  • Yoon, J. W., & Padmanabhan, G. (1993). Parameter estimation of linear and nonlinear Muskingum models. Journal of Water Resources Planning and Management, 119(5), 600–610.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Omid Bozorg-Haddad.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bozorg-Haddad, O., Hamedi, F., Fallah-Mehdipour, E. et al. Upstream flood pattern recognition based on downstream events. Environ Monit Assess 190, 306 (2018). https://doi.org/10.1007/s10661-018-6686-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10661-018-6686-3

Keywords

Navigation