Heavy metal bioaccumulation in Oreochromis niloticus from Tenango Dam, Puebla, Mexico


Oreochromis niloticus was used to determine the effects of heavy metals and their concentration in aquatic environments. Its wide distribution, resistance, and economical importance make it a suitable biomonitor. The present study was conducted in the Tenango Dam (Puebla, Mexico) to determine water quality and its impact on O. niloticus, a species that is cultured and commercialized in this area. Five samples were collected over 1 year to evaluate the water’s physicochemical parameters (temperature, dissolved oxygen, pH, and hardness) and metal contents (cadmium, chromium, copper, and lead). Metal concentrations, bioconcentration factors, and metallothionein levels were also assessed in O. niloticus livers and muscle tissues. Water and tilapia quality were estimated according to current Mexican guidelines. Results indicated that the water’s physicochemical parameters were within acceptable ranges. Metal concentrations, however, suggested that this resource was not suitable for urban use. Moreover, metal levels in fish tissues exceeded the acceptable limits during two periods, rendering it unsuitable for human consumption. The bioconcentration factor indicated that the metals can potentially accumulate in organisms. Furthermore, metallothionein levels in liver and muscle showed a direct correlation with metal concentrations in these tissues. This is the first study to use tilapia as an indicator of contamination in the Tenango Dam, and also the first to describe the presence of metals in this water body.

This is a preview of subscription content, log in to check access.

Access options

Buy single article

Instant unlimited access to the full article PDF.

US$ 39.95

Price includes VAT for USA

Subscribe to journal

Immediate online access to all issues from 2019. Subscription will auto renew annually.

US$ 199

This is the net price. Taxes to be calculated in checkout.

Fig. 1
Fig. 2
Fig. 3


  1. Abbas, H. H. H., Hammada, M. M., & Miller, J. D. (2007). Vitamin C and cadmium toxicity in fish Oreochromis niloticus. Online Journal of Veterinary Research, 11(1), 54–74.

  2. Abdel-Baki, A. S., Dkhil, M. A., & Al-Quraishy, S. (2011). Bioaccumulation of some heavy metals in tilapia fish relevant to their concentration in water and sediment of Wadi Hanifah, Saudi Arabia. African Journal of Biotechnology, 10(13), 2541–2547.

  3. Abdulali, K. A., Shuhaimi-Othman, M., & Ahmad, A. K. (2012). Analysis of heavy metal concentrations in Tilapia fish (oreochromis niloticus) from four selected markets in Selangor, Peninsular Malaysia. Journal of Biological Sciences, 12(3), 138–145.

  4. Ackermann, C. (2008). A quantitative and qualitative histological assessment of selected organs of Oreochromis mossambicus after acute exposure to cadmium, chromium and nickel. M. Sc. dissertation, University of Johannesburg, South Africa.

  5. Adazabra, A. N., Kombat, E. O., & Fletcher, J. J. (2014). Parameterization of non-essential heavy metals concentration in different tissues of inland commercial fish Oreochromis niloticus from Vea Dam, Bolgatanga, Northern Ghana. International Journal of Current Research and Academic Review, 2(7), 247–258.

  6. APHA. (1992). Standard methods for the examination of water and wastewater. Washington, DC: American Public Health Association.

  7. Arillo, A., & Melodio, F. (1988). Effects of hexavalent chromium on trout mitochondria. Toxicology Letters, 44, 71–76.

  8. Atli, G., & Canli, M. (2003). Natural occurrence of metallothionein-like protein in liver of fish Orechromis niloticus and effects of cadmium, lead, copper, zinc, and iron exposures on their profiles. Bulletin of Environmental Contamination and Toxicology, 70, 619–627.

  9. Authman, M. M. N. (2008). Orechromis niloticus as a biomonitor of heavy metal pollution with emphasis on potential risk and relation to some biological aspects. Global. Veterinária, 2(3), 104–109.

  10. Badii, Z. M. H., Garza, C. R., Garza, A. V., & Landeros, F. J. (2005). Los indicadores biológicos en la evaluación de la contaminación por agroquímicos en ecosistemas acuáticos y asociados. Cultura, Ciencia y Tecnología, 2(6), 1–20.

  11. Borgmann, U. (2000). Methods for assessing the toxicological significance of metals in aquatic ecosystems: bioaccumulation-toxicity relationships water concentrations and sediment spiking approaches. Aquatic Ecosystem Health and Management, 3, 277–289.

  12. Canli, M., & Atli, G. (2003). The relationships between heavy metals (Cd, Cr, Cu, Fe, Pb, Zn) levels and the size of six Mediterranean fish species. Environmental Pollution, 121(1), 129–136.

  13. Cerón-Carpio, A. B., Contreras-Jiménez, J. L., & Gante-Cabrera, V. H. (2012). Inventario Pteridoflorístico del área de protección de recursos naturales “Cuenca hidrográfica del río Necaxa”, porción puebla, Mexico. Mexico: CONAGUA.

  14. Chandrasekera, L. W. H. U., Pathiratne, A., & Pathiratne, K. A. S. (2008). Effects of water borne cadmium on biomarker enzymes and metallothioneins in Nile tilapia, Oreochromis niloticus. Journal of the National Science Foundation of Sri Lanka, 36(4), 315–322.

  15. Chatterjee, S., Datta, S., Das, T. K., Veer, V., Mishra, D., Chakraborty, A., Chattopadhyay, B., Datta, S., Mukhopadhyay, K. S., & Gupta, K. D. (2016). Metal accumulation and metallothionein induction in Orechromis niloticus grown in waster fed fishponds. Ecological Engineering, 90(16), 405–416.

  16. Chovanec, A., Schiemer, F., Cabela, A., Gressler, S., Grotzer, C., Pascher, K., Raab, R., Teufl, H., & Wimmer, R. (2000). Constructed inshore zones as river corridors through urban areas—the Danube in Vienna: preliminary results. Regulated Rivers: Research & Management, 16, 175–187.

  17. Comisión Nacional del Agua (CNA). (2016). Ley federal de derechos. Disposiciones aplicables en materia de aguas nacionales. México: Diario Oficial de la Federación, México.

  18. Cowx, I. G., & Collares-Pereira, M. J. (2002). Freshwater fish conservation: options for the future. In M. J. Collares-Pereira, I. G. Cowx, & M. M. Coehlo (Eds.), Conservation of freshwater fishes: options for the future (pp. 443–452). Oxford: Fishing News Books.

  19. Dyk, J. C. V., Pieterse, G. M., & Van Vuren, J. H. J. (2007). Histological changes in the liver of Oreochromis mossambicus (Cichlidae) after exposure to cadmium and zinc. Ecotoxicology and Environmental Safety, 66, 432–440.

  20. Ekpo, F. E., Agu, N. N., & Udoakpan, U. I. (2013). Influence of heavy metals concentration in three common fish, sediment and water collected within quarry environment, Akamkpa L. G. area, Cross river State, Nigeria. European Journal of Toxicological Sciences, 3, 1–11.

  21. El-Badawi, A. A. (2005). Effect of lead toxicity on some physiological aspects of Nile tilapia fish, Oreochromis niloticus. International Conferences of the Veterinary Research Division. Cairo, Egypt: NRC.

  22. El-Sayed, M. Y., Abdel-Wahab, M. W., Nasser, A., Hossam, E., & Mohamed, M. (2013). Histological changes in the liver and intestine of Nile Tilapia, Orechromis niloticus, exposed to sub lethal concentrations of cadmium. Pakistan Journal of Zoology, 45(3), 833–841.

  23. EPA Method 3015. (1995). Microwave assisted acid digestion of aqueous sample an extract. Accessed on January 15, 2016.

  24. Ercal, N., Gurer-Orhan, H., & Aykin-Burns, N. (2001). Toxic metals and oxidative stress Part I: Mechanisms involved in metal-induced oxidative damage. Current Topics in Medicinal Chemistry, 1, 529–539.

  25. Essa, H. H., & Rateb, H. Z. (2011). Residues of some heavy metals in freshwater fish (Oreochromis niloticus and Labeo niloticus) in assiut city markets. Assiut University Bulletin for Environmental, 14(1), 31–39.

  26. Evans, D. W., Dodoo, D. K., & Hanson, P. J. (1993). Trace elements concentrations in fish livers implications of variations with fish size in pollution monitoring. Marine Pollution Bulletin, 26(6), 329–334.

  27. Flores, T. F. J., Flores, P. L., Valenzuela, C. I. C., & Flores, S. E. A. (2010). Lixiviados de biosólidos sobre la biota dulceacuícola. Investigación y Ciencia, 18(48), 38–48.

  28. Francis, O., & Faith, B. (2016). Fish tissue bio-concentration and interspecies uptake of heavy metals from waste water lagoons. Journal of pollution Effects & Control, 4, 157.

  29. Fuentes, F., & Massol, A. (2002). Manual de laboratorios: ecología de microorganismos. Puerto Rico: Universidad de Puerto Rico.

  30. Gold-Bouchot, G., Zapata-Pérez, O., Rodríguez-Fuentes, G., Ceja-Moreno, V., Rio-García, M., & Chan-Cocom, E. (2006). Biomarkers and pollutants in the Nile Tilapia, Orechromis niloticus, in four lakes from San Miguel, Chiapas, Mexico. International Journal of Environment and Pollution, 26(1-3), 129–141.

  31. González-Ramírez, C. A., Prieto-García, F., Prieto-Méndez, J., & Román- Gutiérrez, A. D. (2009). Contaminación y fitotoxicidad en plantas por metales pesados provenientes de suelos y agua. Tropical and Subtropical. Agroecosystems, without month, pp. 29-44.

  32. Grossel, M., & Wood, C. M. (2002). Copper uptake across rainbow trout gills: mechanisms of apical entry. Journal of Experimental Biology, 205, 1179–1188.

  33. Gülüzar, A., & Canli, M. (2008). Responses of metallothionein and reduced glutathione in a freshwater fish Oreochromis niloticus following metal exposures. Environmental Toxicology and Pharmacology, 25, 33–38.

  34. Hauser-Davis, R. A., Bastos, F. F., Tuton, B., Chávez, R. R., Saint, P. T., Ziolli, L. R., & Arruda, M. A. Z. (2014). Bile and liver metallothionein behavior in copper-exposed fish. Journal of Trace Elements in Medicine and Biology, 28, 70–74.

  35. INE-UACH. (2007). Estudio de Ordenamiento Ecológico Territorial de las Cuencas Hidrológicas de los ríos Necaxa y Laxaxalpa. Accessed on May 15, 2017.

  36. Ishaq, S. E., Rufus, S. A., & Annune, P. A. (2011). Bioaccumulation of heavy metals in fish (Tilapia Zilli and Clarias gariepinus) organs from river Benue, North-Central Nigeria. Pakistan Journal of Analytical & Environmental Chemistry, 12(1&2), 1–37.

  37. Legislación brasileña de metales pesados (LBMP). (2017). Metales pesados en materia de alimentos. http://paguicidas.comercio/MetalPesado.pdf. Accessed on May 15, 2017

  38. Lim, L. K., Wai, K. P., Ka-Yee, J., & Ming, C. K. (1998). Metal toxicity and metallothionein gene expression studies in common carp and tilapia. Marine Environmental Research, 46(1-5), 563–566.

  39. Lozada-Zarate, E. J., Monks, S., Pulido-Flores, G., Gordillo-Martínez, A. J., & Prieto-García, F. (2006). Determinación de metales pesados en Cyprinus en la laguna de Metztitlan, Hidalgo, México. Accessed on May 15, 2017.

  40. Mencías, R. E., & Mayero, F. L. M. (2000). Manual de toxicología básica. Madrid: Díaz de Santos. Madrid.

  41. Mohamed, E. H., & Osman, A. R. (2014). Heavy metals concentration in water, muscles and gills of Orechromis niloticus collected from the sewage-treated water and the White Nile. International Journal of Aquaculture, 4(6), 36–42.

  42. Moreno, G. M. D. (2003). Toxicología ambiental. México: Mc Graw Hill.

  43. Mostafa, M. E., Rabie, S. F., Aida, A. D., & Mohammad, F. (2015). Assessment of heavy metals concentration in water and edible tissues of Nile tilapia (Oreochromis niloticus) from two fish farms irrigated with different water sources, Egypt. International Journal of Environment, 4(1), 108–115.

  44. Mulu, B. D., & Mehari, M. W. (2013). Distribution of trace metals in two commercially important fish species (Tilapia zilli and Oreochromis niloticus) sediment and wáter from Lake Gubdahri, Eastern Tigrar of Northern Ethiopia. International Journal of Scientific and Research Publications, 3(9), 1–7.

  45. Nelson, J. S. (1994). Fishes of the world. New York: John Wiley and Sons.

  46. Oberdorff, T., Pont, D., Hugueny, B., & Porcher, J. P. (2002). Development and validation of a fish-based index for the assessment of ‘river health’ in France. Freshwater Biology, 47, 1720–1734.

  47. Obregón, A., & Duván, A. (2006). Limnología aplicada a la acuicultura. Revista Veterinaria REDVET, 7(11), 1–24.

  48. Osman, A. G. (2012). Biomarkers in Nile tilapia Orechromis niloticus (Linnaeus, 1758) to assess the impacts of river Nile pollution: bioaccumulation, biochemical and tissues biomarkers. Journal of Environmental Protection, 3, 966–977.

  49. Phillips, D. H., & Segar, D. A. (1986). Use of bio-indicators in monitoring conservative contaminants: program design imperatives. Marine Pollution Bulletin, 17, 10–17.

  50. Ramos, O., Guevara, N., Macías, B., & Ortiz, Y. (2004). Evaluación de riesgo a la salud por la presencia de metales pesados en pescado. Toxicología, 1, 2–4.

  51. Roesijadi, G. (1992). Metallothioneins in metal regulation and toxicity in aquatic animals. Aquatic Toxicology, 22(2), 81–114.

  52. Saavedra, M. A. (2006). Manejo del cultivo de tilapia. Nicaragua: CIDEA-Coastal Resources Center.

  53. Scheuhammer, A. M., & Cherian, M. G. (1986). Quantification of metallothionein by silver saturation methods. Toxicology and Applied Phamarcology, 82(3), 417–425.

  54. Secretaría de Agricultura, Ganadería, Desarrollo Rural, Pesca y Alimento (SAGARPA). (2006). Manual de producción de tilapia con especificaciones de calidad e inocuidad. México: SAGARPA.

  55. Secretaria de Economía. (2001). NMX-AA-051-SCFI-2001. Determinación de metales por absorción atómica en aguas naturales, potables, residuales y residuales tratadas. México: Diario Oficial de la Federación.

  56. Secretaria de Salud. (2011). NOM-242-SSA1-2009. Productos y servicios. Productos de la pesca frescos, refrigerados, congelados y procesados. Especificaciones sanitarias y métodos de prueba. México: Diario Oficial de la Federación.

  57. Shiau, S. Y., & Ning, Y. C. (2003). Estimation of dietary copper requirements of juvenile tilapia, Oreochromis niloticus x O. aureus. Journal of Animal Science, 77, 287–292.

  58. Sokal, R. R., & Rohlf, F. J. (2012). Biometry: the principles and practice of statistics in biological research. New York: W. H. Freeman and Co..

  59. Valle, V. P. (2000). Toxicología de Alimentos. México: Instituto Nacional de Salud Pública.

  60. Vinodhini, R., & Narayanan, M. (2008). Bioaccumulations of heavy metals in organs of fresh water fish Cyprinus carpio (Common carp). International journal of Environmental Science and Technology, 5, 179–182.

  61. Wichert, G. A., & Rapport, D. J. (1998). Fish community structure as a measure of degradation and rehabilitation of riparian systems in an agricultural drainage basin. Environmental Management, 22, 425–443.

  62. Zapata-Pérez, O., Sima - Álvarez, R., Noreña-Barroso, E., Guemes, J., Gold-Bouchot, G., Ortega, A., & Albores-Medina, A. (2000). Toxicity of sediments from Bahia de Chetumal, Mexico, as assessed by hepatic EROD induction and histology in Nile Tilapia Oreochromis niloticus. Marine Environmental Research, 50(1-5), 385–391.

Download references


This research was sponsored by the Indicadores de integridad ecológica y salud ambiental 2014-2018 project, from the Universidad Autónoma Metropolitana (UAM). These results are linked with the UAM Biological and health sciences PhD, part of the Census of Quality Postgraduate Program supported by CONACYT, Mexico. We would like to thank Dr. Héctor Barrera Villa Zevallos for reviewing this manuscript.

Author information

Correspondence to Mario Alejandro Muñoz-Nájera.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Muñoz-Nájera, M.A., Barrera-Escorcia, G., Ramírez-Romero, P. et al. Heavy metal bioaccumulation in Oreochromis niloticus from Tenango Dam, Puebla, Mexico. Environ Monit Assess 190, 280 (2018).

Download citation


  • Oreochromis niloticus
  • Metals
  • Bioconcentration
  • Metallothioneins