Skip to main content
Log in

Cadmium sorption and extractability in tropical soils with variable charge

  • Published:
Environmental Monitoring and Assessment Aims and scope Submit manuscript

Abstract

The availability of cadmium (Cd) for plants and its impact in the environment depends on Cd sorption in soil colloids. The study of Cd sorption in soil and its fractionation is an interesting tool for the evaluation of Cd affinity with soil pools. The objective with this study was to evaluate Cd sorption and desorption in tropical soils with variable charge (three Oxisols), in a Mollisol and in two Entisols with diverse physical, chemical, and mineralogical attributes. We used a thermodynamic approach to evaluate Cd sorption and performed a chemical fractionation of Cd in the six soils. Data from Cd sorption fit the Langmuir model (r > 0.94), and the sorption capacity ranged from 0.33 to 11.5 mmol kg−1. The Gibbs standard free energy was positively correlated to Cd sorption capacity (r = 0.74, except for the Quartzipsamments), and it was more favorable in soils with great sorption capacity. Distribution of Cd among fractions was not affected (t test, α = 0.05) by initial concentration, and there was a predominance of Cd extractable in 0.1 mol L−1 CaCl2.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Adhikari, T., & Singh, M. V. (2003). Sorption characteristics of lead and cadmium in some soils of India. Geoderma, 114(1–2), 81–92. https://doi.org/10.1016/S0016-7061(02)00352-X.

    Article  CAS  Google Scholar 

  • Adriano, D. C. (2001). Trace elements in terrestial environments: biogeochemistry, bioavailability and risk of metals (Vol. 3, 2nd ed.). New York: Springer-Verlag. https://doi.org/10.1007/978-0-387-21510-5.

    Book  Google Scholar 

  • Ahnstrom, Z. S., & Parker, D. R. (1999). Development and Assessment of a Sequential Extraction Procedure for the Fractionation of Soil Cadmium. Soil Science Society of America Journal, 63(3), 1650–1658.

  • Alloway, B. J. (1995). Heavy metals in soils (2nd ed.). New York: Springer.

    Book  Google Scholar 

  • Atkins, P. W. (1994). Physical-chemistry (5th ed.). Oxford: Oxford University Press.

    Google Scholar 

  • Bacon, J. R., & Davidson, C. M. (2008). Is there a future for sequential chemical extraction? The Analyst, 133(1), 25–46. https://doi.org/10.1039/b711896a.

    Article  CAS  Google Scholar 

  • Camargo, O. A., Moniz, A. C., Jorge, J. A., & Valadares, J. M. A. S. (2009). Methods of chemical, mineralogical and physical analysis of soil (in Portuguese) (Boletim 10.). Campinas: Agronomic Institute of Campinas.

    Google Scholar 

  • Colzato, M., Kamogawa, M. Y., Carvalho, H. W. P., Alleoni, L. R. F., & Hesterberg, D. (2017). Temporal changes in cadmium speciation in Brazilian soils evaluated using Cd L–Edge XANES and chemical fractionation. Journal of Environment Quality, 0(0), 0. https://doi.org/10.2134/jeq2016.08.0316

  • Brazilian National Environmental Concil. (2009). Resolução CONAMA 420/2009, 20.

  • Devesa, V., & Vélez, D. (2016). Cadmium: properties and determination. Encyclopedia of Food and Health. Elsevier. https://doi.org/10.1016/B978-0-12-384947-2.00669-3.

  • Dias, N. M. P., Alleoni, L. R. F., Casagrande, J. C., & Camargo, O. A. (2003). Energia livre da reação de adsorção de cádmio em latossolos ácricos. Ciência Rural, 33, 829–834. https://doi.org/10.1590/S0103-84782003000500006.

    Article  Google Scholar 

  • Du, X., Rate, A. W., & Gee, MAM. (2012) Redistribution and mobilization of titanium, zirconium and thorium in an intensely weathered lateritic profile in Western Australia. Chemical Geology, 330–331, 101–115.

    Article  CAS  Google Scholar 

  • Embrapa. (1997). Manual of methods of soil analysis (in Portuguese). Rio de Janeiro: Brazilian Agricultural Reseach Corporation - Embrapa.

    Google Scholar 

  • Garrido, J. J., Morera, M. T., Echeverrõâa, J. C., & Mazkiara, C. (2001). Isotherms and sequential extraction procedures for evaluating sorption and distribution of heavy metals in soils. Environmental Pollution, 113, 135–144.

    Article  Google Scholar 

  • Gee, G. W., & Bauder, J. W. (2002). Particle-size analysis. In J. H. Dane & G. C. Toop (Eds.), Methods of soils analysis (2nd ed.). Madison: Soil Science Society of America.

    Google Scholar 

  • Gillman, G. P. (1979). A proposed method for the measurement of exchange properties of highly weathered soils. Australian Journal of Soil Research, 17, 129–139. https://doi.org/10.1071/SR9790129.

    Article  CAS  Google Scholar 

  • Hall, G. E. M., Vaive, J. E., Beer, R., & Hoashi M. (1996) Selective leaches revisited, with emphasis on the amorphous Fe oxyhydroxide phase extraction. Journal of Geochemical Exploration, 56(1), 59–78.

    Article  CAS  Google Scholar 

  • Harter, R. D., & Naidu, R. (2001). An assessment of environmental and solution parameter impact on trace-metal sorption by soils. Soil Science Society of America Journal, 65(3), 597–612. https://doi.org/10.2136/sssaj2001.653597x.

    Article  CAS  Google Scholar 

  • He, Z. L., Xu, H. P., Zhu, Y. M., Yang, X. E., & Chen, G. C. (2005a). Adsorption-desorption characteristics of cadmium in variable charge soils. Journal of environmental science and health. Part A, Toxic/hazardous substances & environmental engineering, 40(4), 805–822. https://doi.org/10.1081/ESE-200048273.

  • He, Z. L., Yang, X. E., & Stoffella, P. J. (2005b). Trace elements in agroecosystems and impacts on the environment. Journal of Trace Elements in Medicine and Biology, 19(2–3), 125–140. https://doi.org/10.1016/j.jtemb.2005.02.010.

    Article  CAS  Google Scholar 

  • International Union of Pure and Applied Chemistry. (2002). “ HEAVY METALS ”— A MEANINGLESS TERM?, 74(5), 793–807.

  • Jackson, M. L. (1979). Soil chemical analysis: advanced course. Madison: by author.

  • Kabata-Pendias, A. (2011). Trace elements in soils and plants. Trace elements in soils and plants. https://doi.org/10.1201/b10158-25.

  • Liu, Y. (2009). Is the free energy change of adsorption correctly calculated? Journal of Chemical and Engineering Data, 54(7), 1981–1985. https://doi.org/10.1021/je800661q.

    Article  CAS  Google Scholar 

  • Loganathan, P., Vigneswaran, S., Kandasamy, J., & Naidu, R. (2012). Cadmium sorption and desorption in soils: a review. Critical Reviews in Environmental Science and Technology, 42(5), 489–533. https://doi.org/10.1080/10643389.2010.520234.

    Article  CAS  Google Scholar 

  • Luo, L., Ma, C., Ma, Y., Zhang, S., Lv, J., & Cui, M. (2011). New insights into the sorption mechanism of cadmium on red mud. Environmental Pollution, 159(5), 1108–1113. https://doi.org/10.1016/j.envpol.2011.02.019.

    Article  CAS  Google Scholar 

  • Ma, L. Q., & Rao, G. N. (1997). Chemical fractionation of cadmium, copper, nickel, and zinc in contaminated soils. Journal of Environmental Quality, 26(1), 259–264. https://doi.org/10.2134/jeq1997.00472425002600010036x.

    Article  CAS  Google Scholar 

  • Milonjic, S. K. (2007). A consideration of the correct calculation of thermodynamic parameters of adsorption. Journal of the Serbian Chemical Society, 72(12), 1363–1367. https://doi.org/10.2298/JSC0712363M.

    Article  CAS  Google Scholar 

  • Morera, M. ., Echeverrı́a, J. ., Mazkiarán, C., & Garrido, J. (2001). Isotherms and sequential extraction procedures for evaluating sorption and distribution of heavy metals in soils. Environmental Pollution, 113(2), 135–144. https://doi.org/10.1016/S0269-7491(00)00169-X.

    Article  CAS  Google Scholar 

  • Naidu, R., Kookana, R. S., Summer, M. E., Harter, R. D., & Tiller, K. G. (1997). Cadmium sorption and transport in variable charged soils. A review. Journal of Environmental Quality, 26, 602–617.

    Article  CAS  Google Scholar 

  • Nogueirol, R. C., Alleoni, L. R. F., Nachtigall, G. R., & de Melo, G. W. (2010). Sequential extraction and availability of copper in Cu fungicide-amended vineyard soils from Southern Brazil. Journal of Hazardous Materials, 181(1–3), 931–937. https://doi.org/10.1016/j.jhazmat.2010.05.102.

    Article  CAS  Google Scholar 

  • Nelson, D. W., & Sommers, L. E. (1996). Total carbon, organic carbon, and organic matter. In D. L. Sparks, A. L. Page, P. A. Helmke, & R. H. Loeppert (Eds.), Methods of soil analysis. Soil Science Society of America: Madison.

    Google Scholar 

  • Ramachandran, V., & Souza, T. J. D. (1999). Adsorption of cadmium by indian soils. Water, Air and Soil Pollution, 111, 225–234.

    Article  CAS  Google Scholar 

  • Rapin, F., Tessier, A., Campbell, P. G. C., & Carignan, R. (1986). Potential artifacts in the determination of metal partitioning in sediments by a sequential extraction procedure. Environmental Science & Technology, 20(8), 836–840. https://doi.org/10.1021/es00150a014.

    Article  CAS  Google Scholar 

  • Rauret, G., López-Sánchez, J. F., Sahuquillo, A., Rubio, R., Davidson, C., Ure, A., & Quevauviller, P. (1999). Improvement of the BCR three step sequential extraction procedure prior to the certification of new sediment and soil reference materials. Journal of Environmental Monitoring, 1, 57–61. https://doi.org/10.1039/a807854h.

  • Roth, E., Mancier, V., & Fabre, B. (2012). Adsorption of cadmium on different granulometric soil fractions: Influence of organic matter and temperature. Geoderma, 189–190, 133–143. https://doi.org/10.1016/j.geoderma.2012.04.010.

    Article  CAS  Google Scholar 

  • Sen Gupta, S., & Bhattacharyya, K. G. (2014). Adsorption of metal ions by clays and inorganic solids. RSC Advances, 4(54), 28537–28586. https://doi.org/10.1039/c4ra03673e.

    Article  CAS  Google Scholar 

  • Serrano, S., Garrido, F., Campbell, C. G., & García-González, M. T. (2005). Competitive sorption of cadmium and lead in acid soils of Central Spain. Geoderma, 124(1–2), 91–104. https://doi.org/10.1016/j.geoderma.2004.04.002.

    Article  CAS  Google Scholar 

  • Sheikhhosseini, A., Shirvani, M., Shariatmadari, H., Zvomuya, F., & Najafic, B. (2014). Kinetics and thermodynamics of nickel sorption to calcium-palygorskite and calcium-sepiolite: A batch study. Geoderma, 217, 111–218, 117. https://doi.org/10.1016/j.geoderma.2013.11.007.

  • Silveira, M. L., Alleoni, L. R. F., O’Connor, G. A., & Chang, A. C. (2006). Heavy metal sequential extraction methods-a modification for tropical soils. Chemosphere, 64(11), 1929–1938. https://doi.org/10.1016/j.chemosphere.2006.01.018.

    Article  CAS  Google Scholar 

  • Skoog, D. A., West, D. M., Holler, F. J., & Couch, S. R. (2005). Fundamentos de Química Analítica. Fundamentos de Química Analítica (8th ed.). São Paulo: Thomson. https://doi.org/10.1016/S0584-8547.

    Book  Google Scholar 

  • Sparks, D. L. (1995). Environmental soil chemistry. San Diego: Academic Press.

    Google Scholar 

  • Tessier, A., Campbell, P. G. C., & Bisson, M. (2002) Sequential extraction procedure for the speciation of particulate trace metals. Analytical Chemistry, 51(7), 844–851.

    Article  Google Scholar 

  • Tipping, E., Hetherington, N. B., Hilton, J., Thompson, D. W., Bowles, E., & Hamilton-Taylor, J. (1985). Artifacts in the use of selective chemical extraction to determine distributions of metals between oxides of manganese and iron. Analytical Chemistry, 57(9), 1944–1946. https://doi.org/10.1021/ac00286a035.

    Article  CAS  Google Scholar 

  • Tolcin, A. (2015). Cadmium [advanced release]. 2013 Minerals Yearbook, (April), 1–7.

  • Tran, H. N., You, S.-J., & Chao, H.-P. (2016). Thermodynamic parameters of cadmium adsorption onto orange peel calculated from various methods: A comparison study. Journal of Environmental Chemical Engineering., 4, 2671–2682. https://doi.org/10.1016/j.jece.2016.05.009.

    Article  CAS  Google Scholar 

  • USDA. (1999). Soil taxonomy. Geological Magazine (2nd ed.). Washington: U.S. Government Printing Office. https://doi.org/10.1017/S0016756800045489 Soil Taxonomy. A Basic System of Soil Classification for Making and Interpreting Soil Surveys. 1975. 754 pp., 12 coloured plates. Agriculture Handbook No. 436. Soil Conservation Service, U.S. Department of Agriculture. From Superintendent of Documents, U.S. Government Printing Office, Washington, D.C. 20402. Price $17.50.F. D. Hole 1976. Soils of Wisconsin. xvi + 223 pp., 8 pls, 151 figs, 26 tables. University of Wisconsin Press, Madison. Price $15.00. ISBN 0 299 06830 7.

    Book  Google Scholar 

  • USEPA. (1996a). Method 3050B - Acid digestion of sediments, sludges, and soils, Hazardous Waste Test Methods, SW-846, p. 38.

  • USEPA. (1996b). Method 3052-Microwave assisted acid digestion of siliceous and organically based matrices, Hazardous Waste Test Methods, SW-846, p. 26.

  • USEPA. (2007). Method 3051A - Microwave assisted acid digestion of sediments, sludges, soils, and oils, Hazardous Waste Test Methods, SW-846, p. 30.

  • Wallmann, K., Kersten, M., Gruber, J., & Förstner, U. (1993). Artifacts in the determination of trace metal binding forms in anoxic sediments by sequential extraction. International Journal of Environmental Analytical Chemistry, 51(1–4), 187–200. https://doi.org/10.1080/03067319308027624.

    Article  CAS  Google Scholar 

  • Xue, W.-B., Yi, A.-H., Zhang, Z.-Q., Tang, C.-L., Zhang, X.-C., & Gao, J.-M. (2009). A new competitive adsorption isothermal model of heavy metals in soils. Pedosphere, 19(2), 251–257. https://doi.org/10.1016/S1002-0160(09)60115-6.

    Article  CAS  Google Scholar 

  • Zhou, X., & Zhou, X. (2014a). The unit problem in the thermodynamic calculation of adsorption using the Langmuir equation. Chemical Engineering Communications, 201(11), 1459–1467. https://doi.org/10.1080/00986445.2013.818541.

    Article  CAS  Google Scholar 

  • Zhou, X., & Zhou, X. (2014b). The unit problem in the thermodynamic calculation of adsorption using the Langmuir equation. Chemical Engineering Communications, 201(11), 1459–1467. https://doi.org/10.1080/00986445.2013.818541.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

São Paulo Research Foundation (FAPESP) for the financial support (processes 2011/23498-9, 2012/08205-8, 2011/19944-3).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marina Colzato.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Colzato, M., Alleoni, L.R.F. & Kamogawa, M.Y. Cadmium sorption and extractability in tropical soils with variable charge. Environ Monit Assess 190, 345 (2018). https://doi.org/10.1007/s10661-018-6666-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10661-018-6666-7

Keywords

Navigation