Compatible above-ground biomass equations and carbon stock estimation for small diameter Turkish pine (Pinus brutia Ten.)

  • Oytun Emre Sakici
  • Omer Kucuk
  • Muhammad Irfan Ashraf


Small trees and saplings are important for forest management, carbon stock estimation, ecological modeling, and fire management planning. Turkish pine (Pinus brutia Ten.) is a common coniferous species and comprises 25.1% of total forest area of Turkey. Turkish pine is also important due to its flammable fuel characteristics. In this study, compatible above-ground biomass equations were developed to predict needle, branch, stem wood, and above-ground total biomass, and carbon stock assessment was also described for Turkish pine which is smaller than 8 cm diameter at breast height or shorter than breast height. Compatible biomass equations are useful for biomass prediction of small diameter individuals of Turkish pine. These equations will also be helpful in determining fire behavior characteristics and calculating their carbon stock. Overall, present study will be useful for developing ecological models, forest management plans, silvicultural plans, and fire management plans.


Biomass Allometric equations Small diameter trees Model accuracy Error-in-variable model Pinus brutia 


  1. Alemdag, I. S., & Horton, K. W. (1981). Single-tree equations for estimating biomass of trembling aspen, large tooth aspen and white birch in Ontario. The  Forestry Chronicle, 57, 169–173.Google Scholar
  2. Aydın, Ç. (2010). Construction of biomass tables of Pinus sylvestris in Artvin Forest Regional Headquarter (a case study of Borçka Planning Unit) (in Turkish). Dissertation: Karadeniz Technical University.Google Scholar
  3. Bilgili, E., & Kucuk, O. (2009). Estimating above-ground fuel biomass in young Calabrian pine (Pinus brutia Ten.) in Turkey. Energy and Fuels, 23, 1797–1800.CrossRefGoogle Scholar
  4. Brandeis, T. J., Delaney, M., Parresol, B. R., & Royer, L. (2006). Development of equations for predicting Puerto Rican subtropical dry forest biomass and volume. Forest Ecology and Management, 233, 133–142.CrossRefGoogle Scholar
  5. Chaturvedi, R. K., & Raghubanshi, A. S. (2013). Aboveground biomass estimation of small diameter woody species of tropical dry forest. New Forests, 44, 509–519.CrossRefGoogle Scholar
  6. Claesson, S., Sahlen, K., & Lundmark, T. (2001). Functions for biomass estimation of young Pinus sylvestris, Picea abies and Betula spp. from stands in northern Sweden with high stand densities. Scandinavian Journal of Forest Research, 16, 138–146.CrossRefGoogle Scholar
  7. Dixon, R. K., Trexler, M. C., Wisniewski, J., Brown, S., Houghton, R. A., & Solomon, A. M. (1994). Carbon pools and flux of global forest ecosystems. Science, 263, 185–190.CrossRefGoogle Scholar
  8. Eker, M., & Ozcelik, R. (2017). Estimating recoverable fuel wood biomass from small diameter trees in Brutian pine (Pinus brutia Ten.) stands. Fresenius Environmental Bulletin, 26(12A), 8286–8297.Google Scholar
  9. Eker, M., Poudel, K. P., & Ozcelik, R. (2017). Aboveground biomass equations for small trees of Brutian pine in Turkey to facilitate harvesting and management. Forests, 8, 477.CrossRefGoogle Scholar
  10. GDF. (2012). Genç meşcereler bakım seferberliği eylem planı 2012–2016 (in Turkish). Ankara: General Directorate of Forestry Publications.Google Scholar
  11. GDF. (2013). Orman atlası (in Turkish). Ankara: General Directorate of Forestry Publications.Google Scholar
  12. GDF. (2015). Türkiye orman varlığı 2015 (in Turkish). Ankara: General Directorate of Forestry Publications.Google Scholar
  13. Goodale, C. L., Apps, M. J., Birdsey, R. A., Field, C. B., Heath, L. S., Houghton, R. A., Jenkins, J. C., Kohlmaier, G. H., Kurz, W., Liu, S., Nabuurs, G., Nilsson, S., & Shvidenko, A. Z. (2002). Forest carbon sinks in the Northern Hemisphere. Ecological Applications, 12, 891–899.CrossRefGoogle Scholar
  14. Guendehou, G. H. S., Lehtonen, A., Moudachirou, M., Mäkipää, R., & Sinsin, B. (2012). Stem biomass and volume models of selected tropical tree species in West Africa. Southern Forests, 74(2), 77–88.CrossRefGoogle Scholar
  15. Janzen, H. H. (2004). Carbon cycling in earth systems—a soil science perspective. Agriculture, Ecosystems & Environment, 104, 399–417.CrossRefGoogle Scholar
  16. Kahriman, A., Sönmez, T., & Şahin, A. (2017). Tree volume tables for Calabrian pine in Antalya and Mersin region. Kastamonu University Journal of Forestry Faculty, 17(1), 9–22.CrossRefGoogle Scholar
  17. Kurz, W. A., Beukema, S. J., & Apps, M. J. (1996). Estimation of root biomass and dynamics for the carbon budget model of the Canadian forest sector. Canadian Journal of Forest Research, 26, 1973–1979.CrossRefGoogle Scholar
  18. Kucuk, O., Bilgili, E., & Saglam, B. (2008). Estimating crown fuel loading for Calabrian pine and Anatolian black pine. International Journal of Wildland Fire, 17(1), 147–154.CrossRefGoogle Scholar
  19. IPCC (2003) Good practice guidance for land use, land-use change and forestry (Eds. Penman, J., Gytarsky, M., Hiraishi, T., Krug, T., Kruger, D., Pipatti, R., Buendia, L., Miwa, K., Ngara, T., Tanabe, K., & Wagner, T.).
  20. IPCC (2006) IPCC Guidelines for national greenhouse gas inventories (Eds. Eggleston, S., Buendia, L., Miwa, K., Ngara, T., & Tanabe, K.).
  21. Pajtík, J., Konôpka, B., & Lukac, M. (2008). Biomass functions and expansion factors in young Norway spruce (Picea abies [L.] Karst) trees. Forest Ecology and Management, 256, 1096–1103.CrossRefGoogle Scholar
  22. Papadopol, C.S. (2001) Climate change mitigation. Are there any forestry options?
  23. Parresol, B. R. (1999). Assessing tree and stand biomass: a review with examples and critical comparisons. Forest Science, 45(4), 573–593.Google Scholar
  24. Peichl, M., & Arain, M. A. (2007). Allometry and partitioning of above- and belowground tree biomass in an age-sequence of white pine forests. Forest Ecology and Management, 253, 68–80.CrossRefGoogle Scholar
  25. Rance, S. J., Mendham, D. S., Cameron, D. M., & Grove, T. S. (2012). An evaluation of the conical approximation as a generic model for estimating stem volume, biomass and nutrient content in young Eucalyptus plantations. New Forests, 43, 109–128.CrossRefGoogle Scholar
  26. Saeed, S., Ashraf, M. I., Ahmad, A., & Rahman, Z. (2016). The Bela forest ecosystem of district Jhelum, a potential carbon sink. Pakistan Journal of Botany, 48(1), 121–129.Google Scholar
  27. Segura, M., & Kanninen, M. (2005). Allometric models for tree volume and total aboveground biomass in a tropical humid forest in Costa Rica. Biotropica, 37(1), 2–8.CrossRefGoogle Scholar
  28. Sönmez, T., Kahriman, A., Şahin, A., & Yavuz, M. (2016). Biomass equations for Calabrian pine in the Mediterranean region of Turkey. Šumarski List, 11-12, 567–576.Google Scholar
  29. Tang, S., Li, Y., & Wang, Y. (2001). Simultaneous equations, error-in-variable models, and model integration in systems ecology. Ecological Modelling, 142(3), 285–294.CrossRefGoogle Scholar
  30. Tolunay, D. (2012). Biomass factors and equations for young Scots pine stands in Bolu-Aladağ (in Turkish). Journal of Faculty of Forestry Istanbul University, 62(2), 97–111.Google Scholar
  31. Tolunay, D. (2013) Coefficients that can be used to calculate biomass and carbon amounts from increment and growing stock in Turkey (in Turkish). International Symposium for the 50th Anniversary of The Forestry Sector Planning in Turkey, 26–28 Nov. 2013, Antalya, Proceedings: 240–251.Google Scholar
  32. UN (1992) Agenda 21. United Nations Conference on Environment and Development, 3–14 Jun. 1992, Rio de Jenario, Brazil.Google Scholar
  33. UN (1998) Kyoto Protocol to the United Nations Framework Convention on Climate Change. United Nations.Google Scholar
  34. UN (2015) Paris Agreement. United Nations.Google Scholar
  35. Ünsal, A. (2007) Construction of biomass tables of Redpine in Karaisalı Forest Administration in Adana Forest Regional Headquarter (in Turkish). Dissertation, Zonguldak Karaelmas University.Google Scholar
  36. Vogt, K. (1991). Carbon budgets of temperate forest ecosystems. Tree Physiology, 9, 69–86.CrossRefGoogle Scholar
  37. Wagner, R. G., & Ter-Mikaelian, M. T. (1999). Comparison of biomass component equations for four species of northern coniferous tree seedlings. Annals of Forest Science, 56, 193–199.CrossRefGoogle Scholar
  38. Xiao, C., & Ceulemans, R. (2004). Allometric relationships for below- and aboveground biomass of young Scots pine. Forest Ecology and Management, 203, 177–186.CrossRefGoogle Scholar
  39. Yılmaz, S. (2015) Determination of biomass of evenaged and pure stands of Pinus brutia in Antalya region (in Turkish). Dissertation, Artvin Çoruh University.Google Scholar
  40. Zeng, W. S., & Tang, S. (2012). Modeling compatible single-tree aboveground biomass equations of Masson pine (Pinus massoniana) in South China. Journal of Forestry Research, 23(4), 593–598.CrossRefGoogle Scholar
  41. Zeng, W. S. (2015). Integrated individual tree biomass simultaneous equations for two larch species in northeastern and northern China. Scandinavian Journal of Forest Research, 30(7), 594–604.CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • Oytun Emre Sakici
    • 1
  • Omer Kucuk
    • 1
  • Muhammad Irfan Ashraf
    • 2
  1. 1.Faculty of ForestryKastamonu UniversityKastamonuTurkey
  2. 2.Department of Forestry and Range ManagementPMAS Arid Agriculture UniversityRawalpindiPakistan

Personalised recommendations