Effects of sodium chloride salinity on ecophysiological and biochemical parameters of oak seedlings (Quercus robur L.) from use of de-icing salts for winter road maintenance

  • Xavier Laffray
  • Laurence Alaoui-Sehmer
  • Mohamed Bourioug
  • Pascale Bourgeade
  • Badr Alaoui-Sossé
  • Lotfi Aleya


Salt is widely used to melt snow on roads especially in mountain regions. Whether as rock salt or aerosols, spread or sprayed over road surfaces, salt may result in increased salt concentrations in soils, which, in turn, affect natural vegetation, especially tree seedlings already subjected to various other types of abiotic stress. The authors investigated the effects of salt treatment-related stress on seedling growth and certain biochemical parameters in Quercus robur to determine ion concentrations in root tips. Seedlings growing in a quartz sand/vermiculite mixture were subjected to NaCl concentrations of 0, 50, or 100 mM for 5 weeks. The results showed that high NaCl concentrations caused a marked reduction in total leaf biomass 55 and 75% for 50 and 100 mM treatments, respectively, in dry weight of stems (84%) and roots (175%) for 100 mM treatment and modified root architecture, whereas no changes appeared in leaf number. A non-significant decrease in relative water content, with changes in ion balance was recorded. Comparison of stressed to control plants show an increase in sodium (3.5–8-fold), potassium (0.6-fold), and chloride (9.5–14-fold) concentrations in the root tips while the K+/Na+ ratio decreased. In taproots, no significant biochemical differences were observed between the salt-treated and the control plants for acid invertase activity, reducing sugars, sucrose, or soluble protein contents. The significance of ion and sugar accumulations in relation to osmotic adjustment and the ability of oak seedlings to cope with salt stress are discussed.


Salt stress Quercus robur Root growth Water relations Sucrose catabolism 



The authors are grateful to the French Agency for Environment and Energy Management (ADEME—France), the Regional Council (Conseil Régional) of Franche-Comté and the Rhone-Mediterranean and Corsica Water Agency (Agence de l’Eau Rhône-Méditerranée and Corse) for their financial support.


  1. Alaoui-Sossé, B., Sehmer, L., Barnola, P., & Dizengremel, P. (1998). Effect of NaCl salinity on growth and mineral partitioning in Quercus robur L., a rhythmically growing species. Trees – Struct Funct, 12, 424–430.Google Scholar
  2. Astebol, S. O., Pedersen, P. A., Rohr, P. K., Fostad, O., & Soldal, O. (1996). Effects of de-icing salts on soil water and vegetation. Report MITRA, Oslo: Norwegian National Road Administration 63 pp.Google Scholar
  3. Bäckström, M., Karlsson, S., Backman, L., Folkeson, L., & Lind, B. (2004). Mobilisation of heavy metals by deicing salts in a roadside environment. Water Research, 38, 720–732.CrossRefGoogle Scholar
  4. Bogemans, J., Neirinckx, L., & Stassart, J. M. (1989). Effect of deicing chloride salts on ion accumulation in spruce (Picea abies L. sp.). Plant and Soil, 113, 3–11.CrossRefGoogle Scholar
  5. Bohnert, H. J., Nelson, D. E., & Jensen, R. G. (1995). Adaptations to environmental stresses. Plant Cell, 7, 1099–1111.CrossRefGoogle Scholar
  6. Chaves, M. M., Flexas, J., & Pinheiro, C. (2009). Photosynthesis under drought and salt stress: regulation mechanisms from whole plant to cell. Annals of Botany, 103, 551–560.CrossRefGoogle Scholar
  7. Epron, D., Toussaint, M. L., & Badot, P. M. (1999). Effects of sodium chloride salinity on root growth and respiration in oak seedlings. Annals of Forest Science, 56, 41–47.CrossRefGoogle Scholar
  8. Fries, J., & Getrost, H. (1977). Organic reagents for trace analysis. Darmstadt: E. Merck.Google Scholar
  9. Fusaro, L., Mereu, S., Brunetti, C., Di Ferdinando, M., Ferrini, F., Manes, F., Salvatori, E., Marzuoli, R., Gerosa, G., & Tattini, M. (2014). Photosynyhetic performance and biochemical adjustments in two co-occurring Mediterranean evergreens, Quercus ilex and Arbutus unedo, differing in salt-exclusion ability. Functional Plant Biology, 41, 391–400.CrossRefGoogle Scholar
  10. Gadallah, M. A. A. (1996). Abscisic acid, temperature and salinity interactions on growth and some mineral elements in Carthamus plants. Plant Growth Regulation, 20, 225–236.CrossRefGoogle Scholar
  11. Getz, H. P. (1991). Activity of cell wall bound acid invertase of mature red beet tissue. Plant Physiology and Biochemistry, 29, 585–593.Google Scholar
  12. Gibbs, J. N., & Palmer, C. A. (1994). A survey of damage to roadside trees in London caused by the application of de-icing salt during the 1990/1991 winter. Arboric J, 18, 321–343.CrossRefGoogle Scholar
  13. Hasegawa, P. M., Bressan, R. A., Zhu, J. K., & Bohnert, H. J. (2000). Plant cellular and molecular responses to high salinity. Annual Review of Plant Physiology and Plant Molecular Biology, 51, 463–499.CrossRefGoogle Scholar
  14. Hodge, A., Berta, G., Doussan, C., Merchan, F., & Crespi, M. (2009). Plant root growth, architecture and function. Plant and Soil, 321, 153–187.CrossRefGoogle Scholar
  15. Houska, C. (2007). Deicing salt–recognising the corrosion threat. Pittsburgh, TMR Consulting: International Molybdenum Association.Google Scholar
  16. Hsiao, T. C., & Xu, L. K. (2000). Sensitivity of growth of roots versus leaves to water stress: biophysical analysis and relation to water transport. Journal of Experimental Botany, 51, 1595–1616.CrossRefGoogle Scholar
  17. Jones, M. G. K., Outlaw, W. H., & Lowry, O. H. (1977). Enzymic assay of 10−7 to 10−14 moles of sucrose in plant tissues. Plant Physiology, 60, 379–383.CrossRefGoogle Scholar
  18. Khan, M. S., Ahmad, D., & Khan, M. A. (2015). Utilization of genes encoding osmoprotectants in transgenic plants for enhanced abiotic stress tolerance. Electronic Journal of Biotechnology, 18, 257–266.CrossRefGoogle Scholar
  19. Leigh, R. A., & Wyn Jones, R. G. (1984). A hypothesis relating critical potassium concentrations for growth to the distribution and functions of this ion in plant cell. The New Phytologist, 97, 1–13.CrossRefGoogle Scholar
  20. Lundmark, A., & Olofsson, B. (2007). Chloride deposition and distribution in soils along a deiced highway—assessment using different methods of measurement. Water, Air, and Soil Pollution, 182, 173–185.CrossRefGoogle Scholar
  21. Miller, G. L. (1959). Use of dinitrosalicylic acid reagent for determination of reducing sugar. Analytical Chemistry, 31, 426–428.CrossRefGoogle Scholar
  22. Moghaieb, R. E. A., Saneoka, H., & Fujita, K. (2004). Effect of salinity on osmotic adjustment, glycinebetaine accumulation and the betaine aldehyde dehydrogenase gene expression in two halophytic plants, Salicornia europaea and Suaeda maritime. Plant Science, 166, 1345–1349.CrossRefGoogle Scholar
  23. Munns, R., & Tester, M. (2008). Mechanisms of salinity tolerance. Annual Review of Plant Biology, 59, 651–681.CrossRefGoogle Scholar
  24. Munns, R. (2002). Comparative physiology of salt and water stress. Plant, Cell & Environment, 25, 239–250.CrossRefGoogle Scholar
  25. Negrào, S., Schmöckel, S. M., & Tester, M. (2017). Evaluating physiological responses of plants to salinity stress. Annals of Botany, 119, 1–11.CrossRefGoogle Scholar
  26. Niu, G., Xu, W., Rodriguez, D., & Sun, Y. (2012). Growth and physiological responses of maize and sorghum genotypes to salt stress. ISRN Agron, 2012, 1–12. Scholar
  27. Norrström, A. C., & Bergstedt, E. (2001). The impact of road de-icing salts (NaCl) on colloid dispersion and base cation pools in roadside soils. Water, Air, and Soil Pollution, 127, 281–299.CrossRefGoogle Scholar
  28. Paludan-Müller, G., Saxe, H., Pedersen, L. B., & Randrup, T. B. (2002). Differences in salt sensitivity of four deciduous tree species to soil or airborne salt. Physiologia Plantarum, 114, 223–230.CrossRefGoogle Scholar
  29. Pedersen, L. B., Randrup, T. B., & Ingerslev, B. (2000). Effects of road distance and protective measures on deicing salt. Journal of Arboriculture, 26, 238–245.Google Scholar
  30. Rodriguez, H. G., Roberts, J. K. M., Jordan, W. R., & Drew, M. C. (1997). Growth, water relation, and accumulation of organic and inorganic solutes in roots of maize seedlings during salt stress. Plant Physiology, 113, 881–893.CrossRefGoogle Scholar
  31. Sarin, C., Hall, J. M., Cotter-Howells, J., Killham, K., & Cresser, M. S. (2000). Influence of complexation with chloride on the responses of a lux-marked bacteria bioassay to cadmium, copper, lead and mercury. Environmental Toxicology and Chemistry, 19, 259–264.Google Scholar
  32. Schiop, S. T., Al Hassan, M., Sestras, A. F., Boscaiu, M., Sestras, R. E., & Vicente, O. (2015). Identification of salt stress biomarkers in Romanian carpathian populations of Picea abies (L.) Karst. PLoS ONE.
  33. Sehmer, L., Alaoui-Sossé, B., & Dizengremel, P. (1995). Effect of salt stress on growth and on detoxifying pathway of pedunculate oak seedlings. J. Plant Physiol, 147, 144–151.CrossRefGoogle Scholar
  34. Silveira, J. A. G., Araújo, S. A. M., Lima, J. P. M. S., & Viégas, R. A. (2009). Roots and leaves display contrasting osmotic adjustment mechanisms in response to NaCl-salinity in Atriplex nummularia. Environmental and Experimental Botany, 66, 1–8.CrossRefGoogle Scholar
  35. Sun, Y., Niu, G., Osuna, P., Zhao, L., Ganjegunte, G., Peterson, G., Peralta-Videa, J. R., & Gardea-Torresdey, J. L. (2014). Variability in salt tolerance of Sorghum bicolor L. Agricultural Sciences, 2(1), 09–21.Google Scholar
  36. Sun, F. F., Zhang, W. S., Hu, H. Z., Li, B., Wang, Y. N., Zhao, Y. K., Li, K., Liu, M., & Li, X. (2009). Salt modulates gravity signaling pathway to regulate growth direction of primary roots in Arabidopsis thaliana. Plant Physiology, 146, 178–188.CrossRefGoogle Scholar
  37. Taiz, L., & Zeiger, E. (1998). Plant physiology. Sunderland, Massachusetts: Sinauer Associates, Inc..Google Scholar
  38. Thornton, F. C., Schadle, M., & Raynal, D. J. (1988). Sensitivity of red oak (Quercus rubra L.) and American beech (Fagus grandiflora Ehrh.) seedlings to sodium salts in solution culture. Tree Physiology, 4, 167–172.CrossRefGoogle Scholar
  39. Van Handel, E. (1968). Direct microdetermination of sucrose. Analytical Biochemistry, 22, 280–283.CrossRefGoogle Scholar
  40. Viskari, E. L., & Kärenlampi, L. (2000). Roadside Scots pine as an indicator of de-icing salt use—a comparative study from two consecutive winters. Water, Air, and Soil Pollution, 122, 405–419.CrossRefGoogle Scholar
  41. Wang, Y., Li, K., & Li, X. (2009). Auxin redistribution modulates plastic development of root system architecture under salt stress in Arabidopsis thaliana. Journal of Plant Physiology, 166, 1637–1645.CrossRefGoogle Scholar
  42. West, G., Inzé, D., & Beemster, G. T. S. (2004). Cell cycle modulation in the response of the primary root of Arabidopsis to salt stress. Plant Physiology, 135, 1050–1058.CrossRefGoogle Scholar
  43. Yang, F., Xiao, X., Zhang, S., Korpelainen, H., & Li, C. (2009). Salt stress responses in Populus cathayana Rehder. Plant Science, 176, 669–677.CrossRefGoogle Scholar
  44. Zhu, J. K. (2002). Salt and drought stress signal transduction in plants. Plant Biol J, 53, 247–273.CrossRefGoogle Scholar
  45. Zörb, C., Mühling, K. H., Kutschera, U., & Geilfus, C. M. (2015). Salinity stiffens the epidermal cell walls of salt-stressed maize leaves: Is the epidermis growth-restricting? PLoS One, 10, e0118406. Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • Xavier Laffray
    • 1
  • Laurence Alaoui-Sehmer
    • 2
  • Mohamed Bourioug
    • 3
  • Pascale Bourgeade
    • 2
  • Badr Alaoui-Sossé
    • 2
  • Lotfi Aleya
    • 2
  1. 1.Département Systématique et EvolutionMuséum National d’Histoire NaturelleParisFrance
  2. 2.Laboratoire Chrono-EnvironnementUMR CNRS 6249, University of Franche-ComtéBesançonFrance
  3. 3.Département d’AgronomieEcole Nationale d’Agriculture de Meknès (ENAM)MeknèsMorocco

Personalised recommendations