The role of pollutants in type 2 diabetes mellitus (T2DM) and their prospective impact on phytomedicinal treatment strategies

  • John Baptist Nzukizi Mudumbi
  • Seteno Karabo Obed Ntwampe
  • Lukhanyo Mekuto
  • Tandi Matsha
  • Elie Fereche Itoba-Tombo
Article
  • 59 Downloads

Abstract

Type 2 diabetes mellitus (T2DM) is the most common form of diabetes and it is characterized by high blood sugar and abnormal sera lipid levels. Although the specific reasons for the development of these abnormalities are still not well understood, traditionally, genetic and lifestyle behavior have been reported as the leading causes of this disease. In the last three decades, the number of diabetic patients has drastically increased worldwide, with current statistics suggesting the number is to double in the next two decades. To combat this incurable ailment, orthodox medicines, to which economically disadvantaged patients have minimal access to, have been used. Thus, a considerable amalgamation of medicinal plants has recently been proven to possess therapeutic capabilities to manage T2DM, and this has prompted studies primarily focusing on the healing aspect of these plants, and ultimately, their commercialization. Hence, this review aims to highlight the potential threat of pollutants, i.e., polyfluoroalkyl compounds (PFCs), endocrine disrupting chemicals (EDCs) and heavy metals, to medicinal plants, and their prospective impact on the phytomedicinal therapy strategies for T2DM. It is further suggested that auxiliary research be undertaken to better comprehend the factors that influence the uptake of these compounds by these plants. This should include a comprehensive risk assessment of phytomedicinal products destined for the treatment of T2DM. Regulations that control the use of PFC-precursors in certain developing countries are also long overdue.

Keywords

Diabetes mellitus Medicinal plants PFCs EDCs Synergy 

Supplementary material

10661_2018_6634_MOESM1_ESM.docx (20 kb)
ESM 1 (DOCX 19 kb)
10661_2018_6634_MOESM2_ESM.docx (16 kb)
ESM 2 (DOCX 15 kb)

References

  1. Abdel-Azim, N. S., Shams, K. A., Shahat, A. A., El Missiry, M. M., Ismail, S. I., & Hammouda, F. M. (2011). Egyptian herbal drug industry: challenges and future prospects. Journal of Medicinal Plant Research, 5, 136–144.CrossRefGoogle Scholar
  2. Abubakari, A. R., Lauder, W., Jones, M. C., Kirk, A., Agyemang, C., & Bhopal, R. S. (2009). Prevalence and time trends in diabetes and physical inactivity among adult West African populations: the epidemic has arrived. Public Health, 123, 602–614.CrossRefGoogle Scholar
  3. Acquaviva, R., Di Giacomo, C., Vanella, L., Santangelo, R., Sorrenti, V., Barbagallo, I., & Iauk, L. (2013). Antioxidant activity of extracts of Momordica foetida Schumach. et Thonn. Molecules, 18, 3241–3249.CrossRefGoogle Scholar
  4. ADA, American Diabetes Association. (2011). Standards of medical care in diabetes—2011. Diabetes Care, 34, S11–S61.CrossRefGoogle Scholar
  5. ADA, American Diabetes Association. (2013). Standards of medical care in diabetes—2013. Diabetes Care, 36, S11–S66.CrossRefGoogle Scholar
  6. ADA, American Diabetes Association. (2014). Diagnosis and classification of diabetes mellitus. Diabetes Care, 37, S81–S90.CrossRefGoogle Scholar
  7. ADA, American Diabetes Association. (2016). Standards of medical care in diabetes—2016 abridged for primary care providers. Clinical diabetes: a Publication of the American Diabetes Association, 34, 3.CrossRefGoogle Scholar
  8. Adewunmi, C. O., & Ojewole, J. A. O. (2006). Safety of traditional medicines, complementary and alternative medicines in Africa. African Journal of Traditional, Complementary and Alternative Medicines, 1, 1–3.Google Scholar
  9. Afolayan, A. J., & Sunmonu, T. O. (2010). In vivo studies on antidiabetic plants used in South African herbal medicine. Journal of Clinical Biochemistry and Nutrition, 47, 98–106.CrossRefGoogle Scholar
  10. Ahrén, B. O., Landin-Olsson, M., Jansson, P. A., Svensson, M., Holmes, D., & Schweizer, A. (2004). Inhibition of dipeptidyl peptidase-4 reduces glycemia, sustains insulin levels, and reduces glucagon levels in type 2 diabetes. The Journal of Clinical Endocrinology & Metabolism, 89, 2078–2084.CrossRefGoogle Scholar
  11. Ahrens, L. (2009). Polyfluoroalkyl compounds in the marine environment: investigations on their distribution in surface water and temporal trends in harbor seals (Phoca vitulina). Environmental and technology studies, Phoca vitulina, University of Lüneburg, Germany, Doctor of Philosophy.Google Scholar
  12. Airaksinen, R., Rantakokko, P., Eriksson, J. G., Blomstedt, P., Kajantie, E., & Kiviranta, H. (2011). Association between type 2 diabetes and exposure to persistent organic pollutants. Diabetes Care, 34, 1972–1979.CrossRefGoogle Scholar
  13. Alberti, K. G. M. M., & Zimmet, P. F. (1998). Definition, diagnosis and classification of diabetes mellitus and its complications. Part 1: diagnosis and classification of diabetes mellitus. Provisional report of a WHO consultation. Diabetic Medicine, 15, 539–553.CrossRefGoogle Scholar
  14. Ali, H., Houghton, P. J., & Soumyanath, A. (2006). α-Amylase inhibitory activity of some Malaysian plants used to treat diabetes; with particular reference to Phyllanthus amarus. Journal of Ethnopharmacology, 107, 449–455.CrossRefGoogle Scholar
  15. Al-Omran, L. S., & Harrad, S. (2016). Polybrominated diphenyl ethers and “novel” brominated flame retardants in floor and elevated surface house dust from Iraq: implications for human exposure assessment. Emerging Contaminants, 2, 7–13.CrossRefGoogle Scholar
  16. Amos, A. F., McCarty, D. J., & Zimmet, P. (1997). The rising global burden of diabetes and its complications: estimates and projections to the year 2010. Diabetic Medicine, 14, S7–S85.CrossRefGoogle Scholar
  17. Arbuckle, T. E., Davis, K., Marro, L., Fisher, M., Legrand, M., LeBlanc, A., & MIREC Study Group. (2014). Phthalate and bisphenol A exposure among pregnant women in Canada—results from the MIREC study. Environment International, 68, 55–65.CrossRefGoogle Scholar
  18. Arise, R. O., Ganiyu, A. I., & Oguntibeju, O. O. (2014). Lipid profile, antidiabetic and antioxidant activity of Acacia ataxacantha bark extract in streptozotocin-induced diabetic rats. In Antioxidant-Antidiabetic Agents and Human Health. InTech.Google Scholar
  19. Ayeleso, A. O., Brooks, N. L., & Oguntibeju, O. O. (2013). Impact of dietary red palm oil (Elaeis guineensis) on liver architecture and antioxidant status in the blood and liver of male Wistar rats: peer reviewed original article. Medical Technology SA, 27, 18–23.Google Scholar
  20. Ayepola, O. R., Brooks, N. L., & Oguntibeju, O. O. (2014a). Kolaviron improved resistance to oxidative stress and inflammation in the blood (erythrocyte, serum, and plasma) of streptozotocin-induced diabetic rats. The Scientific World Journal, 2014, 1–8.CrossRefGoogle Scholar
  21. Ayepola, O. R., Cerf, M. E., Brooks, N. L., & Oguntibeju, O. O. (2014b). Kolaviron, a biflavonoid complex of Garcinia kola seeds modulates apoptosis by suppressing oxidative stress and inflammation in diabetes-induced nephrotoxic rats. Phytomedicine, 21, 1785–1793.CrossRefGoogle Scholar
  22. Balogun, F. O., Tshabalala, N. T., & Ashafa, A. O. T. (2016). Antidiabetic medicinal plants used by the Basotho tribe of Eastern Free State: a review. Journal of Diabetes Research, 2016, 1–13.CrossRefGoogle Scholar
  23. Balti, E. V., Echouffo-Tcheugui, J. B., Yako, Y. Y., & Kengne, A. P. (2014). Air pollution and risk of type 2 diabetes mellitus: a systematic review and meta-analysis. Diabetes Research and Clinical Practice, 106, 161–172.CrossRefGoogle Scholar
  24. Banks, R. E., Smart, B. E., & Tatlow, J. C. (Eds.). (2013). Organofluorine chemistry: principles and commercial applications. Springer Science & Business Media Berlin.Google Scholar
  25. Bao, J., Lee, Y. L., Chen, P. C., Jin, Y. H., & Dong, G. H. (2014). Perfluoroalkyl acids in blood serum samples from children in Taiwan. Environmental Science and Pollution Research, 21, 7650–7655.CrossRefGoogle Scholar
  26. Barba, C., Cavalli-Sforza, T., Cutter, J., & Darnton-Hill, I. (2004). Appropriate body-mass index for Asian populations and its implications for policy and intervention strategies. The Lancet, 363, 157.CrossRefGoogle Scholar
  27. Barker, D. J., & Osmond, C. (1986). Infant mortality, childhood nutrition, and ischaemic heart disease in England and Wales. The Lancet, 327, 1077–1081.CrossRefGoogle Scholar
  28. Bartley, P. C., Bogoev, M., Larsen, J., & Philotheou, A. (2008). Long-term efficacy and safety of insulin detemir compared to neutral protamine Hagedorn insulin in patients with type 1 diabetes using a treat-to-target basal–bolus regimen with insulin aspart at meals: a 2-year, randomized, controlled trial. Diabetic Medicine, 25, 442–449.CrossRefGoogle Scholar
  29. Bečanová, J., Melymuk, L., Vojta, Š., Komprdová, K., & Klánová, J. (2016). Screening for perfluoroalkyl acids in consumer products, building materials and wastes. Chemosphere, 164, 322–329.CrossRefGoogle Scholar
  30. Bell, G. I., Santerre, R. F., & Mullenbach, G. T. (1983). Hamster preproglucagon contains the sequence of glucagon and two related peptides. Nature, 302(5910), 716–718.CrossRefGoogle Scholar
  31. Bergman, Å., Heindel, J. J., Kasten, T., Kidd, K. A., Jobling, S., Neira, M., & Brandt, I. (2013). The impact of endocrine disruption: a consensus statement on the state of the science. Environmental Health Perspectives, 121(4), a104.CrossRefGoogle Scholar
  32. Bergman, Å., Heindel, J., Jobling, S., Kidd, K., & Zoeller, R. T. (2012). State-of-the-science of endocrine disrupting chemicals, 2012. Toxicology Letters, 211, S3.CrossRefGoogle Scholar
  33. Berrington de Gonzalez, A., Hartge, P., Cerhan, J. R., Flint, A. J., Hannan, L., MacInnis, R. J., et al. (2010). Body-mass index and mortality among 1.46 million white adults. New England Journal of Medicine, 363, 2211–2219.CrossRefGoogle Scholar
  34. Birks, L., Casas, M., Garcia, A. M., Alexander, J., Barros, H., Bergström, A., & Eggesbø, M. (2016). Occupational exposure to endocrine-disrupting chemicals and birth weight and length of gestation: a European meta-analysis. Environmental Health Perspectives, 124, 1785.CrossRefGoogle Scholar
  35. Birnbaum, L. S. (2013). State of the science of endocrine disruptors. Environmental Health Perspectives, 121, a107.CrossRefGoogle Scholar
  36. Bizkarguenaga, E., Zabaleta, I., Mijangos, L., Iparraguirre, A., Fernández, L. A., Prieto, A., & Zuloaga, O. (2016). Uptake of perfluorooctanoic acid, perfluorooctane sulfonate and perfluorooctane sulfonamide by carrot and lettuce from compost amended soil. Science of the Total Environment, 571, 444–451.CrossRefGoogle Scholar
  37. Blaine, A. C., Rich, C. D., Sedlacko, E. M., Hundal, L. S., Kumar, K., Lau, C., & Higgins, C. P. (2014). Perfluoroalkyl acid distribution in various plant compartments of edible crops grown in biosolids-amended soils. Environmental Science & Technology, 48, 7858–7865.CrossRefGoogle Scholar
  38. Blasi, C. (2016). Can diabetes heal?—from observations to perspectives. Current Diabetes Reviews, 12, 184–198.CrossRefGoogle Scholar
  39. Bloom, A. (2012). Diabetes explained. Berlin: Springer Science & Business Media.Google Scholar
  40. Booe, M. (2016). Diets for type 2 diabetes and high cholesterol. Available Online: http://www.livestrong.com/article/282441-diets-for-type-2-diabetes-high-cholesterol/. Accessed on 28 June 2017.
  41. Bourez, S., Le Lay, S., Van den Daelen, C., Louis, C., Larondelle, Y., Thomé, J. P., et al. (2012). Accumulation of polychlorinated biphenyls in adipocytes: selective targeting to lipid droplets and role of caveolin-1. PLoS One, 7, e31834.CrossRefGoogle Scholar
  42. Bourez, S., Van den Daelen, C., Le Lay, S., Poupaert, J., Larondelle, Y., Thomé, J. P., et al. (2013). The dynamics of accumulation of PCBs in cultured adipocytes vary with the cell lipid content and the lipophilicity of the congener. Toxicology Letters, 216, 40–46.CrossRefGoogle Scholar
  43. Braniš, M. (2010). Personal exposure measurements. In Human exposure to pollutants via dermal absorption and inhalation (pp. 97–141). Netherlands: Springer.CrossRefGoogle Scholar
  44. Breitinger, H. G. (2012). Drug synergy–mechanisms and methods of analysis. In Toxicity and Drug Testing. InTech.Google Scholar
  45. Buse, J. B., Caprio, S., Cefalu, W. T., Ceriello, A., Del Prato, S., Inzucchi, S. E., & Kahn, R. (2009). How do we define cure of diabetes? Diabetes Care, 32, 2133–2135.CrossRefGoogle Scholar
  46. Bussmann, R. W., Malca, G., Glenn, A., Sharon, D., Nilsen, B., Parris, B., & Carillo, L. (2011). Toxicity of medicinal plants used in traditional medicine in Northern Peru. Journal of Ethnopharmacology, 137, 121–140.CrossRefGoogle Scholar
  47. Cantelli-Forti, G., Maffei, F., Hrelia, P., Bugamelli, F., Bernardi, M., D’Intino, P., & Raggi, M. A. (1994). Interaction of licorice on glycyrrhizin pharmacokinetics. Environmental Health Perspectives, 102, 65.CrossRefGoogle Scholar
  48. Casals-Casas, C., & Desvergne, B. (2011). Endocrine disruptors: from endocrine to metabolic disruption. Annual Review of Physiology, 73, 135–162.CrossRefGoogle Scholar
  49. Chan, J. C., Malik, V., Jia, W., Kadowaki, T., Yajnik, C. S., Yoon, K. H., & Hu, F. B. (2009). Diabetes in Asia: epidemiology, risk factors, and pathophysiology. JAMA, 301, 2129–2140.CrossRefGoogle Scholar
  50. Chan, K. (2003). Some aspects of toxic contaminants in herbal medicines. Chemosphere, 52, 1361–1371.CrossRefGoogle Scholar
  51. Chen, L., Magliano, D. J., & Zimmet, P. Z. (2012a). The worldwide epidemiology of type 2 diabetes mellitus—present and future perspectives. Nature Reviews Endocrinology, 8, 228–236.CrossRefGoogle Scholar
  52. Chen, L., Yang, J., Davey, A. K., Chen, Y. X., Wang, J. P., & Liu, X. Q. (2009). Effects of diammonium glycyrrhizinate on the pharmacokinetics of aconitine in rats and the potential mechanism. Xenobiotica, 39, 955–963.CrossRefGoogle Scholar
  53. Chen, M. H., Ha, E. H., Wen, T. W., Su, Y. N., Lien, G. W., Chen, C. Y., et al. (2012b). Perfluorinated compounds in umbilical cord blood and adverse birth outcomes. PLoS One, 7, e42474.CrossRefGoogle Scholar
  54. Chen, W., Van Wyk, B. E., Vermaak, I., & Viljoen, A. M. (2012c). Cape aloes—a review of the phytochemistry, pharmacology and commercialization of Aloe ferox. Phytochemistry Letters, 5, 1–12.CrossRefGoogle Scholar
  55. Chevalier, N., & Fénichel, P. (2015). Endocrine disruptors: new players in the pathophysiology of type 2 diabetes. Diabetes & Metabolism, 41, 107–115.CrossRefGoogle Scholar
  56. Chikezie, P. C., Ojiako, O. A., & Nwufo, K. C. (2015). Overview of anti-diabetic medicinal plants: the Nigerian research experience. Journal of Diabetes & Metabolism, 6, 546.CrossRefGoogle Scholar
  57. Chou, T. C. (2010). Drug combination studies and their synergy quantification using the Chou-Talalay method. Cancer Research, 70, 440–446.CrossRefGoogle Scholar
  58. Chuparina, E. V., & Aisueva, T. S. (2011). Determination of heavy metal levels in medicinal plant Hemerocallis minor Miller by X-ray fluorescence spectrometry. Environmental Chemistry Letters, 9, 19–23.CrossRefGoogle Scholar
  59. Cock, I. E. (2015). The genus aloe: phytochemistry and therapeutic uses including treatments for gastrointestinal conditions and chronic inflammation. In Novel natural products: therapeutic effects in pain, arthritis and gastro-intestinal diseases (pp. 179–235). Basel: Springer.CrossRefGoogle Scholar
  60. Coogan, P. F., White, L. F., Jerrett, M., Brook, R. D., Su, J. G., Seto, E., & Rosenberg, L. (2012). Air pollution and incidence of hypertension and diabetes mellitus in black women living in Los Angeles. Circulation, 125, 767–772.CrossRefGoogle Scholar
  61. Copeland, K. C., Silverstein, J., Moore, K. R., Prazar, G. E., Raymer, T., Shiffman, R. N., et al. (2013). Management of newly diagnosed type 2 diabetes mellitus (T2DM) in children and adolescents. Pediatrics, 131, 364–382.CrossRefGoogle Scholar
  62. Coppola, A., Sasso, L., Bagnasco, A., Giustina, A., & Gazzaruso, C. (2016). The role of patient education in the prevention and management of type 2 diabetes: an overview. Endocrine, 53, 18–27.CrossRefGoogle Scholar
  63. Corsini, E., Luebke, R. W., Germolec, D. R., & DeWitt, J. C. (2014). Perfluorinated compounds: emerging POPs with potential immunotoxicity. Toxicology Letters, 230, 263–270.CrossRefGoogle Scholar
  64. Costa, G., Sartori, S., & Consonni, D. (2009). Thirty years of medical surveillance in perfluooctanoic acid production workers. Journal of Occupational and Environmental Medicine, 51, 364–372.CrossRefGoogle Scholar
  65. Costacou, T., Evans, R. W., & Orchard, T. J. (2011). High-density lipoprotein cholesterol in diabetes: is higher always better. Journal of Clinical Lipidology, 5, 387–394.CrossRefGoogle Scholar
  66. Daniele, G., Mendoza, R. G., Winnier, D., Fiorentino, T. V., Pengou, Z., Cornell, J., & Tripathy, D. (2014). The inflammatory status score including IL-6, TNF-α, osteopontin, fractalkine, MCP-1 and adiponectin underlies whole-body insulin resistance and hyperglycemia in type 2 diabetes mellitus. Acta Diabetologica, 51, 123–131.CrossRefGoogle Scholar
  67. Danz, H., Baumann, D., & Hamburger, M. (2002). Quantitative determination of the dual COX-2/5-LOX inhibitor tryptanthrin in Isatis tinctoria by ESI-LC-MS. Planta Medica, 68, 152–157.CrossRefGoogle Scholar
  68. Daszykowski, M., Korzen, M., Krakowska, B., & Fabianczyk, K. (2015). Expert system for monitoring the tributyltin content in inland water samples. Chemometrics and Intelligent Laboratory Systems, 149, 123–131.CrossRefGoogle Scholar
  69. Davids, D., Gibson, D., & Johnson, Q. (2016). Ethnobotanical survey of medicinal plants used to manage high blood pressure and type 2 diabetes mellitus in Bitterfontein, Western Cape Province, South Africa. Journal of Ethnopharmacology, 194, 755–766.CrossRefGoogle Scholar
  70. de Arcaute, C. R., Soloneski, S., & Larramendy, M. L. (2016). Toxic and genotoxic effects of the 2, 4-dichlorophenoxyacetic acid (2, 4-D)-based herbicide on the Neotropical fish Cnesterodon decemmaculatus. Ecotoxicology and Environmental Safety, 128, 222–229.CrossRefGoogle Scholar
  71. De Silva, A. O., Allard, C. N., Spencer, C., Webster, G. M., & Shoeib, M. (2012). Phosphorus-containing fluorinated organics: polyfluoroalkyl phosphoric acid diesters (diPAPs), perfluorophosphonates (PFPAs), and perfluorophosphinates (PFPIAs) in residential indoor dust. Environmental Science and Technology, 46, 12575–12582.CrossRefGoogle Scholar
  72. Deutschländer, M. S., Lall, N., & Van De Venter, M. (2009). Plant species used in the treatment of diabetes by South African traditional healers: an inventory. Pharmaceutical Biology, 47, 348–365.CrossRefGoogle Scholar
  73. Dimala, C. A., Atashili, J., Mbuagbaw, J. C., Wilfred, A., & Monekosso, G. L. (2016). A comparison of the diabetes risk score in HIV/AIDS patients on highly active antiretroviral therapy (HAART) and HAART-naïve patients at the Limbe regional hospital, Cameroon. PLoS One, 11, e0155560.CrossRefGoogle Scholar
  74. Donath, M. Y. (2014). Targeting inflammation in the treatment of type 2 diabetes: time to start. Nature Reviews Drug Discovery, 13, 465–476.CrossRefGoogle Scholar
  75. Drewes, S. E., Horn, M., & Khan, F. (2006). The chemistry and pharmacology of medicinal plants. In N. Diederichs (Ed.), Commercializing medicinal plants—a Southern African guide (pp. 87–96). Stellenbosch: Sun Press.Google Scholar
  76. Dreyer, A., Kirchgeorg, T., Weinberg, I., & Matthias, V. (2015). Particle-size distribution of airborne poly-and perfluorinated alkyl substances. Chemosphere, 129, 142–149.CrossRefGoogle Scholar
  77. Du, G., Hu, J., Huang, H., Qin, Y., Han, X., Wu, D., & Wang, X. (2013). Perfluorooctane sulfonate (PFOS) affects hormone receptor activity, steroidogenesis, and expression of endocrine-related genes in vitro and in vivo. Environmental Toxicology and Chemistry, 32, 353–360.CrossRefGoogle Scholar
  78. Dzhambov, A. M., & Dimitrova, D. D. (2016). Exposures to road traffic, noise, and air pollution as risk factors for type 2 diabetes: a feasibility study in Bulgaria. Noise & Health, 18, 133.CrossRefGoogle Scholar
  79. Eddouks, M., Maghrani, M., Lemhadri, A., Ouahidi, M. L., & Jouad, H. (2002). Ethnopharmacological survey of medicinal plants used for the treatment of diabetes mellitus, hypertension and cardiac diseases in the south-east region of Morocco (Tafilalet). Journal of Ethnopharmacology, 82, 97–103.CrossRefGoogle Scholar
  80. Eldeen, I. M., Effendy, M. A., & Tengku-Muhammad, T. S. (2016). Ethnobotany: challenges and future perspectives. Research Journal of Medicinal Plants, 10, 382–387.CrossRefGoogle Scholar
  81. Erasto, P., Adebola, P. O., Grierson, D. S., & Afolayan, A. J. (2005). An ethnobotanical study of plants used for the treatment of diabetes in the Eastern Cape Province, South Africa. African Journal of Biotechnology, 4, 1458–1460.Google Scholar
  82. Eriksen, K. T., Raaschou-Nielsen, O., McLaughlin, J. K., Lipworth, L., Tjønneland, A., Overvad, K., & Sørensen, M. (2013). Association between plasma PFOA and PFOS levels and total cholesterol in a middle-aged Danish population. PLoS One, 8, e56969.CrossRefGoogle Scholar
  83. Esposito, K., Petrizzo, M., Maiorino, M. I., Bellastella, G., & Giugliano, D. (2016). Particulate matter pollutants and risk of type 2 diabetes: a time for concern. Endocrine, 51, 32–37.CrossRefGoogle Scholar
  84. Everett, C. J., & Thompson, O. M. (2014). Dioxins, furans and dioxin-like PCBs in human blood: causes or consequences of diabetic nephropathy. Environmental Research, 132, 126–131.CrossRefGoogle Scholar
  85. Evert, A. B., Boucher, J. L., Cypress, M., Dunbar, S. A., Franz, M. J., Mayer-Davis, E. J., & Yancy, W. S. (2013). Nutrition therapy recommendations for the management of adults with diabetes. Diabetes Care, 36, 3821–3842.CrossRefGoogle Scholar
  86. Exley, K., Aerts, D., Biot, P., Casteleyn, L., Kolossa-Gehring, M., Schwedler, G., & Schindler, B. K. (2015). Pilot study testing a European human biomonitoring framework for biomarkers of chemical exposure in children and their mothers: experiences in the UK. Environmental Science and Pollution Research, 22, 15821–15834.CrossRefGoogle Scholar
  87. Eze, I. C., Hemkens, L. G., Bucher, H. C., Hoffmann, B., Schindler, C., Künzli, N., & Probst-Hensch, N. M. (2015). Association between ambient air pollution and diabetes mellitus in Europe and North America: systematic review and meta-analysis. Environmental Health Perspectives, 123, 381–389.Google Scholar
  88. Feng, W., Cui, X., Liu, B., Liu, C., Xiao, Y., Lu, W., & Chen, W. (2015). Association of urinary metal profiles with altered glucose levels and diabetes risk: a population-based study in China. PLoS One, 10, e0123742.CrossRefGoogle Scholar
  89. Fletcher, T., Galloway, T. S., Melzer, D., Holcroft, P., Cipelli, R., Pilling, L. C., & Harries, L. W. (2013). Associations between PFOA, PFOS and changes in the expression of genes involved in cholesterol metabolism in humans. Environment International, 57, 2–10.CrossRefGoogle Scholar
  90. Forte, G., Bocca, B., Peruzzu, A., Tolu, F., Asara, Y., Farace, C., & Madeddu, R. (2013). Blood metals concentration in type 1 and type 2 diabetics. Biological Trace Element Research, 156, 79–90.CrossRefGoogle Scholar
  91. Gabb, H. A., & Blake, C. (2016). An informatics approach to evaluating combined chemical exposures from consumer products: a case study of asthma-associated chemicals and potential endocrine disruptors. Environmental Health Perspectives, 124, 1155.Google Scholar
  92. Gao, Y., Fu, J., Cao, H., Wang, Y., Zhang, A., Liang, Y., & Jiang, G. (2015). Differential accumulation and elimination behavior of perfluoroalkyl acid isomers in occupational workers in a manufactory in China. Environmental Science & Technology, 49, 6953–6962.CrossRefGoogle Scholar
  93. Garber, A. J., King, A. B., Del Prato, S., Sreenan, S., Balci, M. K., Muñoz-Torres, M., & NN1250–3582 (BEGIN BB T2D) Trial Investigators. (2012). Insulin degludec, an ultra-longacting basal insulin, versus insulin glargine in basal-bolus treatment with mealtime insulin aspart in type 2 diabetes (BEGIN Basal-Bolus Type 2): a phase 3, randomised, open-label, treat-to-target non-inferiority trial. The Lancet, 379, 1498–1507.CrossRefGoogle Scholar
  94. Ginsberg, G. L., & Balk, S. J. (2016). Consumer products as sources of chemical exposures to children: case study of triclosan. Current Opinion in Pediatrics, 28, 235–242.CrossRefGoogle Scholar
  95. Giudice, L. C. (2016). Environmental toxicants: hidden players on the reproductive stage. Fertility and Sterility, 106, 791–794.CrossRefGoogle Scholar
  96. Gjorgieva, D., Kadifkova Panovska, T., Ruskovska, T., Bačeva, K., & Stafilov, T. (2013). Influence of heavy metal stress on antioxidant status and DNA damage in Urtica dioica. BioMed Research International, 2013, 1–6.CrossRefGoogle Scholar
  97. Gjorgieva, D., Kadifkova-Panovska, T., Bačeva, K., & Stafilov, T. (2010). Content of toxic and essential metals in medicinal herbs growing in polluted and unpolluted areas of Macedonia. Archives of Industrial Hygiene and Toxicology, 61, 297–303.CrossRefGoogle Scholar
  98. Gondwe, M., Kamadyaapa, D. R., Tufts, M., Chuturgoon, A. A., & Musabayane, C. T. (2008). Sclerocarya birrea [(A. Rich.) Hochst.][Anacardiaceae] stem-bark ethanolic extract (SBE) modulates blood glucose, glomerular filtration rate (GFR) and mean arterial blood pressure (MAP) of STZ-induced diabetic rats. Phytomedicine, 15, 699–709.CrossRefGoogle Scholar
  99. Green, J. B., Bethel, M. A., Armstrong, P. W., Buse, J. B., Engel, S. S., Garg, J., & Lachin, J. M. (2015). Effect of sitagliptin on cardiovascular outcomes in type 2 diabetes. New England Journal of Medicine, 373, 232–242.CrossRefGoogle Scholar
  100. Grundy, S. M., Brewer, H. B., Cleeman, J. I., Smith, S. C., & Lenfant, C. (2004). Definition of metabolic syndrome. Circulation, 109, 433–438.CrossRefGoogle Scholar
  101. Guariguata, L., Whiting, D. R., Hambleton, I., Beagley, J., Linnenkamp, U., & Shaw, J. E. (2014). Global estimates of diabetes prevalence for 2013 and projections for 2035. Diabetes Research and Clinical Practice, 103, 137–149.CrossRefGoogle Scholar
  102. Guerranti, C., Perra, G., Corsolini, S., & Focardi, S. E. (2013). Pilot study on levels of perfluorooctane sulfonic acid (PFOS) and perfluorooctanoic acid (PFOA) in selected foodstuffs and human milk from Italy. Food Chemistry, 140, 197–203.CrossRefGoogle Scholar
  103. Guerrero-Preston, R., Goldman, L. R., Brebi-Mieville, P., Ili-Gangas, C., LeBron, C., Witter, F. R., & Sidransky, D. (2010). Global DNA hypomethylation is associated with in utero exposure to cotinine and perfluorinated alkyl compounds. Epigenetics, 5, 539–546.CrossRefGoogle Scholar
  104. Hall, V., Thomsen, R. W., Henriksen, O., & Lohse, N. (2011). Diabetes in sub Saharan Africa 1999-2011: epidemiology and public health implications. A systematic review. BMC Public Health, 11, 564.CrossRefGoogle Scholar
  105. Hanssen, L., Röllin, H., Odland, J. Ø., Moe, M. K., & Sandanger, T. M. (2010). Perfluorinated compounds in maternal serum and cord blood from selected areas of South Africa: results of a pilot study. Journal of Environmental Monitoring, 12, 1355–1361.CrossRefGoogle Scholar
  106. Haq, I. (2004). Safety of medicinal plants. Pakistan Journal of Medical Research, 43, 203–210.Google Scholar
  107. He, D., Wu, S., Zhao, H., Qiu, H., Fu, Y., Li, X., & He, Y. (2017). Association between particulate matter 2.5 and diabetes mellitus: a meta-analysis of cohort studies. Journal of Diabetes Investigation.  https://doi.org/10.1111/jdi.12631.
  108. Heller, S., Buse, J., Fisher, M., Garg, S., Marre, M., Merker, L., & Pei, H. (2012). Insulin degludec, an ultra-longacting basal insulin, versus insulin glargine in basal-bolus treatment with mealtime insulin aspart in type 1 diabetes (BEGIN Basal-Bolus Type 1): a phase 3, randomised, open-label, treat-to-target non-inferiority trial. The Lancet, 379, 1489–1497.CrossRefGoogle Scholar
  109. Hidalgo, A., & Mora-Diez, N. (2016). Novel approach for predicting partition coefficients of linear perfluorinated compounds. Theoretical Chemistry Accounts, 135, 18.CrossRefGoogle Scholar
  110. Hussain, A., Claussen, B., Ramachandran, A., & Williams, R. (2007). Prevention of type 2 diabetes: a review. Diabetes Research and Clinical Practice, 76, 317–326.CrossRefGoogle Scholar
  111. IDF, International Diabetes Foundation. (1994). Triennial report (1991–1994) and directory. Brussels: International Diabetes Federation.Google Scholar
  112. IDF, International Diabetes Foundation. (2015). IDF diabetes atlas, 7th ed., 2015.Google Scholar
  113. IDF, International Diabetes Foundation. (2017). IDF diabetes atlas, 8th ed., 2017.Google Scholar
  114. Imamura, F., O’Connor, L., Ye, Z., Mursu, J., Hayashino, Y., Bhupathiraju, S. N., & Forouhi, N. G. (2015). Consumption of sugar sweetened beverages, artificially sweetened beverages, and fruit juice and incidence of type 2 diabetes: systematic review, meta-analysis, and estimation of population attributable fraction. BMJ, 351, h3576.CrossRefGoogle Scholar
  115. Inagaki, N., Kondo, K., Yoshinari, T., & Kuki, H. (2015). Efficacy and safety of canagliflozin alone or as add-on to other oral antihyperglycemic drugs in Japanese patients with type 2 diabetes: a 52-week open-label study. Journal of Diabetes Investigation, 6, 210–218.CrossRefGoogle Scholar
  116. Inzucchi, S. E., Bergenstal, R. M., Buse, J. B., Diamant, M., Ferrannini, E., Nauck, M., & Matthews, D. R. (2012). Management of hyperglycaemia in type 2 diabetes: a patient-centered approach. Position statement of the American Diabetes Association (ADA) and the European Association for the Study of Diabetes (EASD). Diabetologia, 55, 1577–1596.CrossRefGoogle Scholar
  117. Isa, S. E., Oche, A. O., Kang’ombe, A. R., Okopi, J. A., Idoko, J. A., Cuevas, L. E., & Gill, G. V. (2016). Human immunodeficiency virus and risk of type 2 diabetes in a large adult cohort in Jos, Nigeria. Clinical Infectious Diseases, 63, 830–835.CrossRefGoogle Scholar
  118. Iwu, M. M. (2014). Handbook of African medicinal plants. Boca Raton: CRC press.CrossRefGoogle Scholar
  119. Janghorbani, M., Momeni, F., & Mansourian, M. (2014). Systematic review and metaanalysis of air pollution exposure and risk of diabetes. European Journal of Epidemiology, 29, 231–242.CrossRefGoogle Scholar
  120. Ji, K., Kim, S., Kho, Y., Paek, D., Sakong, J., Ha, J., & Choi, K. (2012). Serum concentrations of major perfluorinated compounds among the general population in Korea: dietary sources and potential impact on thyroid hormones. Environment International, 45, 78–85.CrossRefGoogle Scholar
  121. Jiang, W., Zhang, Y., Yang, L., Chu, X., & Zhu, L. (2015). Perfluoroalkyl acids (PFAAs) with isomer analysis in the commercial PFOS and PFOA products in China. Chemosphere, 127, 180–187.CrossRefGoogle Scholar
  122. Kabir, E. R., Rahman, M. S., & Rahman, I. (2015). A review on endocrine disruptors and their possible impacts on human health. Environmental Toxicology and Pharmacology, 40, 241–258.CrossRefGoogle Scholar
  123. Karnes, C., Winquist, A., & Steenland, K. (2014). Incidence of type II diabetes in a cohort with substantial exposure to perfluorooctanoic acid. Environmental Research, 128, 78–83.CrossRefGoogle Scholar
  124. Keter, L. K., & Mutiso, P. C. (2012). Ethnobotanical studies of medicinal plants used by traditional health practitioners in the management of diabetes in Lower Eastern Province, Kenya. Journal of Ethnopharmacology, 139, 74–80.CrossRefGoogle Scholar
  125. Khan, A. R., & Awan, F. R. (2014). Metals in the pathogenesis of type 2 diabetes. Journal of Diabetes & Metabolic Disorders, 13, 16.CrossRefGoogle Scholar
  126. Kim, E. J., Park, Y. M., Park, J. E., & Kim, J. G. (2014). Distributions of new Stockholm convention POPs in soils across South Korea. Science of the Total Environment, 476, 327–335.CrossRefGoogle Scholar
  127. Kim, J. H., Park, H. Y., Jeon, J. D., Kho, Y., Kim, S. K., Park, M. S., & Hong, Y. C. (2016). The modifying effect of vitamin C on the association between perfluorinated compounds and insulin resistance in the Korean elderly: a double-blind, randomized, placebo-controlled crossover trial. European Journal of Nutrition, 55, 1011–1020.CrossRefGoogle Scholar
  128. King, H., & Rewers, M. (1993). Global estimates for prevalence of diabetes mellitus and impaired glucose tolerance in adults. Diabetes Care, 16(1), 157–177.CrossRefGoogle Scholar
  129. King, H., Aubert, R. E., & Herman, W. H. (1998). Global burden of diabetes, 1995–2025: prevalence, numerical estimates, and projections. Diabetes Care, 21(9), 1414–1431.CrossRefGoogle Scholar
  130. Kirkley, A. G., & Sargis, R. M. (2014). Environmental endocrine disruption of energy metabolism and cardiovascular risk. Current Diabetes Reports, 14, 494.CrossRefGoogle Scholar
  131. Kohan, D. E., Fioretto, P., Tang, W., & List, J. F. (2014). Long-term study of patients with type 2 diabetes and moderate renal impairment shows that dapagliflozin reduces weight and blood pressure but does not improve glycemic control. Kidney International, 85, 962–971.CrossRefGoogle Scholar
  132. Kolachi, N. F., Kazi, T. G., Afridi, H. I., Kazi, N., Khan, S., Kandhro, G. A., & Jamali, M. K. (2011). Status of toxic metals in biological samples of diabetic mothers and their neonates. Biological Trace Element Research, 143, 196–212.CrossRefGoogle Scholar
  133. Kotthoff, M., Müller, J., Jürling, H., Schlummer, M., & Fiedler, D. (2015). Perfluoroalkyl and polyfluoroalkyl substances in consumer products. Environmental Science and Pollution Research, 22, 14546–14559.CrossRefGoogle Scholar
  134. Kuo, C. C., & Navas-Acien, A. (2015). Commentary: Environmental chemicals and diabetes: which ones are we missing? International Journal of Epidemiology, 44, 248–250.CrossRefGoogle Scholar
  135. Kuo, C. C., Moon, K., Thayer, K. A., & Navas-Acien, A. (2013). Environmental chemicals and type 2 diabetes: an updated systematic review of the epidemiologic evidence. Current Diabetes Reports, 13, 831–849.CrossRefGoogle Scholar
  136. Kurwadkar, S., Struckhoff, G., Pugh, K., & Singh, O. (2017). Uptake and translocation of sulfamethazine by alfalfa grown under hydroponic conditions. Journal of Environmental Sciences, 53, 217–223.CrossRefGoogle Scholar
  137. Kwok, K. Y., Wang, X. H., Ya, M., Li, Y., Zhang, X. H., Yamashita, N., & Lam, P. K. (2015). Occurrence and distribution of conventional and new classes of per-and polyfluoroalkyl substances (PFASs) in the South China Sea. Journal of Hazardous Materials, 285, 389–397.CrossRefGoogle Scholar
  138. La Merrill, M., Emond, C., Kim, M. J., Antignac, J. P., Le Bizec, B., Clément, K., & Barouki, R. (2013). Toxicological function of adipose tissue: focus on persistent organic pollutants. Environmental Health Perspectives, 121, 162.Google Scholar
  139. Lechner, M., & Knapp, H. (2011). Carryover of perfluorooctanoic acid (PFOA) and perfluorooctane sulfonate (PFOS) from soil to plant and distribution to the different plant compartments studied in cultures of carrots (Daucus carota ssp. Sativus), potatoes (Solanum tuberosum), and cucumbers (Cucumis Sativus). Journal of Agricultural and Food Chemistry, 59, 11011–11018.CrossRefGoogle Scholar
  140. Lee, D. H. (2016). Are persistent organic pollutants a common soil of type 2 diabetes and type 3 diabetes (dementia)? Diabetes Research and Clinical Practice, 120, S11.CrossRefGoogle Scholar
  141. Lee, H., Tevlin, A. G., Mabury, S. A., & Mabury, S. A. (2013). Fate of polyfluoroalkyl phosphate diesters and their metabolites in biosolids-applied soil: biodegradation and plant uptake in greenhouse and field experiments. Environmental Science & Technology, 48, 340–349.CrossRefGoogle Scholar
  142. Leonard, S. S., Cutler, D., Ding, M., Vallyathan, V., Castranova, V., & Shi, X. (2002). Antioxidant properties of fruit and vegetable juices: more to the story than ascorbic acid. Annals of Clinical & Laboratory Science, 32, 193–200.Google Scholar
  143. Li, Y., Zhang, Y., Wang, W., & Wu, Y. (2017). Association of urinary cadmium with risk of diabetes: a meta-analysis. Environmental Science and Pollution Research, 24, 10083–10090.Google Scholar
  144. Lignell, S., Aune, M., Darnerud, P. O., Hanberg, A., Larsson, S. C., & Glynn, A. (2013). Prenatal exposure to polychlorinated biphenyls (PCBs) and polybrominated diphenyl ethers (PBDEs) may influence birth weight among infants in a Swedish cohort with background exposure: a cross-sectional study. Environmental Health, 12, 44.CrossRefGoogle Scholar
  145. Lind, L., & Lind, M. (2016). Environmental pollutants and cardiovascular diseases. Diabetes Research and Clinical Practice, 120, S11.CrossRefGoogle Scholar
  146. Lind, L., & Lind, P. M. (2012). Can persistent organic pollutants and plastic-associated chemicals cause cardiovascular disease? Journal of Internal Medicine, 271, 537–553.CrossRefGoogle Scholar
  147. Lind, L., Zethelius, B., Salihovic, S., van Bavel, B., & Lind, P. M. (2014). Circulating levels of perfluoroalkyl substances and prevalent diabetes in the elderly. Diabetologia, 57, 473–479.CrossRefGoogle Scholar
  148. Liu, B., Feng, W., Wang, J., Li, Y., Han, X., Hu, H., & He, M. (2016a). Association of urinary metals levels with type 2 diabetes risk in coke oven workers. Environmental Pollution, 210, 1–8.CrossRefGoogle Scholar
  149. Liu, C., Bai, Y., Xu, X., Sun, L., Wang, A., Wang, T. Y., & Ying, Z. (2014a). Exaggerated effects of particulate matter air pollution in genetic type II diabetes mellitus. Particle and Fibre Toxicology, 11, 27.CrossRefGoogle Scholar
  150. Liu, C., Yang, C., Zhao, Y., Ma, Z., Bi, J., Liu, Y., & Chen, R. (2016b). Associations between long-term exposure to ambient particulate air pollution and type 2 diabetes prevalence, blood glucose and glycosylated hemoglobin levels in China. Environment International, 92, 416–421.CrossRefGoogle Scholar
  151. Liu, C., Ying, Z., Harkema, J., Sun, Q., & Rajagopalan, S. (2013). Epidemiological and experimental links between air pollution and type 2 diabetes. Toxicologic Pathology, 41, 361–373.CrossRefGoogle Scholar
  152. Liu, G., Sun, L., Pan, A., Zhu, M., Li, Z., Wang, Z., & Ong, C. N. (2014b). Nickel exposure is associated with the prevalence of type 2 diabetes in Chinese adults. International Journal of Epidemiology, 44, 240–248.CrossRefGoogle Scholar
  153. Ljunggren, S. A., Helmfrid, I., Salihovic, S., van Bavel, B., Wingren, G., Lindahl, M., & Karlsson, H. (2014). Persistent organic pollutants distribution in lipoprotein fractions in relation to cardiovascular disease and cancer. Environment International, 65, 93–99.CrossRefGoogle Scholar
  154. Löfstedt Gilljam, J., Leonel, J., Cousins, I. T., & Benskin, J. P. (2015). Is ongoing sulfluramid use in South America a significant source of perfluorooctanesulfonate (PFOS)? Production inventories, environmental fate, and local occurrence. Environmental Science & Technology, 50, 653–659.CrossRefGoogle Scholar
  155. Loots, D. T., Pieters, M., Shahidul Islam, M., & Botes, L. (2011). Antidiabetic effects of Aloe ferox and Aloe greatheadii var. davyana leaf gel extracts in a low-dose streptozotocin diabetes rat model. South African Journal of Science, 107, 46–51.CrossRefGoogle Scholar
  156. Magliano, D. J., Loh, V. H. Y., Harding, J. L., Botton, J., & Shaw, J. E. (2014). Persistent organic pollutants and diabetes: a review of the epidemiological evidence. Diabetes & Metabolism, 40, 1–14.CrossRefGoogle Scholar
  157. Mahomoodally, M. F. (2013). Traditional medicines in Africa: an appraisal of ten potent African medicinal plants. Evidence-Based Complementary and Alternative Medicine, 2013, 1–14.CrossRefGoogle Scholar
  158. Malik, V. S., Popkin, B. M., Bray, G. A., Després, J. P., Willett, W. C., & Hu, F. B. (2010). Sugar-sweetened beverages and risk of metabolic syndrome and type 2 diabetes: a meta-analysis. Diabetes Care, 33, 2477–2483.CrossRefGoogle Scholar
  159. Malviya, N., Jain, S., & Malviya, S. A. P. N. A. (2010). Antidiabetic potential of medicinal plants. Acta Poloniae Pharmaceutica, 67, 113–118.Google Scholar
  160. Manzano-Salgado, C. B., Casas, M., Lopez-Espinosa, M. J., Ballester, F., Martinez, D., Ibarluzea, J., & Vrijheid, M. (2016). Variability of perfluoroalkyl substance concentrations in pregnant women by socio-demographic and dietary factors in a Spanish birth cohort. Environment International, 92, 357–365.CrossRefGoogle Scholar
  161. Marso, S. P., Bain, S. C., Consoli, A., Eliaschewitz, F. G., Jódar, E., Leiter, L. A., et al. (2016b). Semaglutide and cardiovascular outcomes in patients with type 2 diabetes. New England Journal of Medicine, 375, 1834–1844.CrossRefGoogle Scholar
  162. Marso, S. P., Daniels, G. H., Brown-Frandsen, K., Kristensen, P., Mann, J. F., Nauck, M. A., & Steinberg, W. M. (2016a). Liraglutide and cardiovascular outcomes in type 2 diabetes. The New England Journal of Medicine, 2016, 311–322.CrossRefGoogle Scholar
  163. Martin, J. W., Ellis, D. A., Mabury, S. A., Hurley, M. D., & Wallington, T. J. (2006). Atmospheric chemistry of perfluoroalkanesulfonamides: kinetic and product studies of the OH radical and Cl atom initiated oxidation of N-ethyl perfluorobutane sulfonamide. Environmental Science & Technology, 40, 864–872.CrossRefGoogle Scholar
  164. Mathers, C. D., & Loncar, D. (2006). Projections of global mortality and burden of disease from 2002 to 2030. PLoS Medicine, 3, e442.CrossRefGoogle Scholar
  165. Matsha, T. E., Hassan, M. S., Kidd, M., & Erasmus, R. T. (2012). The 30-year cardiovascular risk profile of South Africans with diagnosed diabetes, undiagnosed diabetes, pre-diabetes or normoglycaemia: the Bellville, South Africa pilot study: cardiovascular topics. Cardiovascular Journal of Africa, 23, 5–11.CrossRefGoogle Scholar
  166. Mattina, M. I., Lannucci-Berger, W., Musante, C., & White, J. C. (2003). Concurrent plant uptake of heavy metals and persistent organic pollutants from soil. Environmental Pollution, 124, 375–378.CrossRefGoogle Scholar
  167. Mbanya, J. C. N., Motala, A. A., Sobngwi, E., Assah, F. K., & Enoru, S. T. (2010). Diabetes in sub-Saharan Africa. The Lancet, 375, 2254–2266.CrossRefGoogle Scholar
  168. Meltzer, S. J. (2014). Unhealthy lifestyles and gestational diabetes.  https://doi.org/10.1136/bmj.g5549.Google Scholar
  169. Mennenga, S. E., Gerson, J. E., Koebele, S. V., Kingston, M. L., Tsang, C. W., Engler-Chiurazzi, E. B., et al. (2015). Understanding the cognitive impact of the contraceptive estrogen ethinyl estradiol: tonic and cyclic administration impairs memory, and performance correlates with basal forebrain cholinergic system integrity. Psychoneuroendocrinology, 54, 1–13.CrossRefGoogle Scholar
  170. Meo, S. A., Memon, A. N., Sheikh, S. A., Rouq, F. A., Usmani, A. M., Hassan, A., & Arian, S. A. (2015). Effect of environmental air pollution on type 2 diabetes mellitus. European Review for Medical and Pharmacological Sciences, 19, 123–128.Google Scholar
  171. Mierendorff, H. G., Stahl-Biskup, E., Posthumus, M. A., & Beek, T. A. V. (2003). Composition of commercial Cape chamomile oil (Eriocephalus punctulatus). Flavour and Fragrance Journal, 18, 510–514.CrossRefGoogle Scholar
  172. Miller, K. A., Siscovick, D. S., Sheppard, L., Shepherd, K., Sullivan, J. H., Anderson, G. L., & Kaufman, J. D. (2007). Long-term exposure to air pollution and incidence of cardiovascular events in women. New England Journal of Medicine, 2007, 447–458.CrossRefGoogle Scholar
  173. Miralles-Marco, A., & Harrad, S. (2015). Perfluorooctane sulfonate: a review of human exposure, biomonitoring and the environmental forensics utility of its chirality and isomer distribution. Environment International, 77, 148–159.CrossRefGoogle Scholar
  174. Monseny, A. M., Sánchez, L. M., Soler, A. M., de la Maza, V. T. S., & Cubells, C. L. (2015). Poisonous plants: an ongoing problem. Anales de Pediatría (English Edition), 82, 347–353.CrossRefGoogle Scholar
  175. Moreira, R. C., Pacheco, A. G., Paula, A., Cardoso, S. W., Moreira, R. I., Ribeiro, S. R., et al. (2016). Diabetes mellitus is associated with increased death rates among HIV-infected patients in Rio de Janeiro, Brazil. AIDS Research and Human Retroviruses, 32, 1210–1218.CrossRefGoogle Scholar
  176. Mori, C., Kakuta, K., Matsuno, Y., Todaka, E., Watanabe, M., Hanazato, M., & Fukata, H. (2014). Polychlorinated biphenyl levels in the blood of Japanese individuals ranging from infants to over 80 years of age. Environmental Science and Pollution Research, 21, 6434–6439.CrossRefGoogle Scholar
  177. Mounanga, M. B., Mewono, L., & Angone, S. A. (2015). Toxicity studies of medicinal plants used in sub-Saharan Africa. Journal of Ethnopharmacology, 174, 618–627.CrossRefGoogle Scholar
  178. Moyo, M., Aremu, A. O., & Van Staden, J. (2015). Medicinal plants: an invaluable, dwindling resource in sub-Saharan Africa. Journal of Ethnopharmacology, 174, 595–606.CrossRefGoogle Scholar
  179. Mudaliar, S., Henry, R. R., Sanyal, A. J., Morrow, L., Marschall, H. U., Kipnes, M., & Dillon, P. (2013). Efficacy and safety of the farnesoid X receptor agonist obeticholic acid in patients with type 2 diabetes and nonalcoholic fatty liver disease. Gastroenterology, 145, 574–582.CrossRefGoogle Scholar
  180. Mudumbi, J. B. N., Ntwampe, S. K. O., Muganza, F. M., & Okonkwo, J. O. (2014a). Perfluorooctanoate and perfluorooctane sulfonate in South African river water. Water Science and Technology, 69, 185–194.CrossRefGoogle Scholar
  181. Mudumbi, J. B. N., Ntwampe, S. K. O., Muganza, M., Okonkwo, O., & Rand, A. (2014c). Concentrations of perfluorooctanoate and perfluorooctane sulfonate in sediment Western Cape Rivers, South Africa. Carpathian Journal of Earth and Environmental Sciences, 9, 147–158.Google Scholar
  182. Mudumbi, J. B. N., Ntwampe, S. K., Muganza, M., & Okonkwo, J. O. (2014b). Susceptibility of riparian wetland plants to perfluorooctanoic acid (PFOA) accumulation. International Journal of Phytoremediation, 16, 926–936.CrossRefGoogle Scholar
  183. Musabayane, C. T., Xozwa, K., & Ojewole, J. A. O. (2005). Effects of Hypoxis hemerocallidea (Fisch. & CA Mey.) [Hypoxidaceae] corm (African potato) aqueous extract on renal electrolyte and fluid handling in the rat. Renal Failure, 27, 763–770.CrossRefGoogle Scholar
  184. Myre, M., & Imbeault, P. (2014). Persistent organic pollutants meet adipose tissue hypoxia: does cross-talk contribute to inflammation during obesity? Obesity Reviews, 15, 19–28.CrossRefGoogle Scholar
  185. Naile, J. E., Khim, J. S., Hong, S., Park, J., Kwon, B. O., Ryu, J. S., & Giesy, J. P. (2013). Distributions and bioconcentration characteristics of perfluorinated compounds in environmental samples collected from the west coast of Korea. Chemosphere, 90, 387–394.CrossRefGoogle Scholar
  186. Navas-Acien, A., Silbergeld, E. K., Pastor-Barriuso, R., & Guallar, E. (2008). Arsenic exposure and prevalence of type 2 diabetes in US adults. JAMA, 300, 814–822.CrossRefGoogle Scholar
  187. Navas-Acien, A., Silbergeld, E. K., Streeter, R. A., Clark, J. M., Burke, T. A., & Guallar, E. (2006). Arsenic exposure and type 2 diabetes: a systematic review of the experimental and epidemiologic evidence. Environmental Health Perspectives, 114(5), 641–648.CrossRefGoogle Scholar
  188. Ng, M., Fleming, T., Robinson, M., Thomson, B., Graetz, N., Margono, C., & Abraham, J. P. (2014). Global, regional, and national prevalence of overweight and obesity in children and adults during 1980–2013: a systematic analysis for the Global Burden of Disease Study 2013. The Lancet, 384, 766–781.CrossRefGoogle Scholar
  189. Nicolopoulou-Stamati, P., Hens, L., & Sasco, A. J. (2015). Cosmetics as endocrine disruptors: are they a health risk? Reviews in Endocrine and Metabolic Disorders, 16, 373–383.CrossRefGoogle Scholar
  190. NIH, National Institute of Health. (2008). DCCT and EDIC: the Diabetes Control and Complications Trial and Follow-up Study. Available Online: https://www.niddk.nih.gov/about-niddk/research-areas/diabetes/dcct-edic-diabetes-control-complications-trial-follow-up-study/Documents/DCCT-EDIC_508.pdf. Accessed 03 July 2017.
  191. Niu, J., Li, Y., Shang, E., Xu, Z., & Liu, J. (2016). Electrochemical oxidation of perfluorinated compounds in water. Chemosphere, 146, 526–538.CrossRefGoogle Scholar
  192. Niu, Y., Zhang, J., Duan, H., Wu, Y., & Shao, B. (2015). Bisphenol A and nonylphenol in foodstuffs: Chinese dietary exposure from the 2007 total diet study and infant health risk from formulas. Food Chemistry, 167, 320–325.CrossRefGoogle Scholar
  193. Njenga, E. W., & Viljoen, A. M. (2006). In vitro 5-lipoxygenase inhibition and anti-oxidant activity of Eriocephalus L. (Asteraceae) species. South African Journal of Botany, 72, 637–641.CrossRefGoogle Scholar
  194. Nohynek, G. J., Borgert, C. J., Dietrich, D., & Rozman, K. K. (2013). Endocrine disruption: fact or urban legend? Toxicology Letters, 223, 295–305.CrossRefGoogle Scholar
  195. Noring, M., Håkansson, C., & Dahlgren, E. (2016). Valuation of ecotoxicological impacts from tributyltin based on a quantitative environmental assessment framework. Ambio, 45, 120–129.CrossRefGoogle Scholar
  196. Nugent, R. (2008). Chronic diseases in developing countries. Annals of the New York Academy of Sciences, 1136, 70–79.CrossRefGoogle Scholar
  197. Ocvirk, S., Kistler, M., Khan, S., Talukder, S. H., & Hauner, H. (2013). Traditional medicinal plants used for the treatment of diabetes in rural and urban areas of Dhaka, Bangladesh—an ethnobotanical survey. Journal of Ethnobiology and Ethnomedicine, 9, 43.CrossRefGoogle Scholar
  198. Ogden, C. L., Carroll, M. D., Kit, B. K., & Flegal, K. M. (2014). Prevalence of childhood and adult obesity in the United States, 2011-2012. JAMA, 311, 806–814.CrossRefGoogle Scholar
  199. Oishi, Y., Sakamoto, T., Udagawa, H., Taniguchi, H., Kobayashi-Hattori, K., Ozawa, Y., & Takita, T. (2007). Inhibition of increases in blood glucose and serum neutral fat by Momordica charantia saponin fraction. Bioscience, Biotechnology, and Biochemistry, 71, 735–740.CrossRefGoogle Scholar
  200. Ojewole, J. A. (2006). Antinociceptive, anti-inflammatory and antidiabetic properties of Hypoxis hemerocallidea Fisch. & CA Mey. (Hypoxidaceae) corm [‘African potato’] aqueous extract in mice and rats. Journal of Ethnopharmacology, 103, 126–134.CrossRefGoogle Scholar
  201. Olujimi, O. O., Fatoki, O. S., Odendaal, J. P., & Oputu, O. U. (2015). Variability in heavy metal levels in river water receiving effluents in Cape Town, South Africa. In Research and Practices in Water Quality. InTech.  https://doi.org/10.5772/59077.
  202. Oyenihi, O. R., Brooks, N. L., & Oguntibeju, O. O. (2015). Effects of kolaviron on hepatic oxidative stress in streptozotocin induced diabetes. BMC Complementary and Alternative Medicine, 15, 236.CrossRefGoogle Scholar
  203. Palioura, E., & Diamanti-Kandarakis, E. (2015). Polycystic ovary syndrome (PCOS) and endocrine disrupting chemicals (EDCs). Reviews in Endocrine and Metabolic Disorders, 16, 365–371.CrossRefGoogle Scholar
  204. Park, S. K. (2017). Ambient air pollution and type 2 diabetes: do the metabolic effects of air pollution start early in life? Diabetes, 66, 1755–1757.CrossRefGoogle Scholar
  205. Park, S. K., & Wang, W. (2014). Ambient air pollution and type 2 diabetes mellitus: a systematic review of epidemiologic research. Current Environmental Health Reports, 1, 275–286.CrossRefGoogle Scholar
  206. Patel, K., Larson, C., Hargreaves, M., Schlundt, D., Wang, H., Jones, C., & Beard, K. (2010). Community screening outcomes for diabetes, hypertension, and cholesterol: Nashville REACH 2010 project. The Journal of Ambulatory Care Management, 33, 155–162.CrossRefGoogle Scholar
  207. Peinado, M. A. (2012). Hypomethylation of DNA. In Encyclopedia of Cancer (pp. 1791–1792). Berlin Heidelberg: Springer.Google Scholar
  208. Pereira-Fernandes, A., Dirinck, E., Dirtu, A. C., Malarvannan, G., Covaci, A., Van Gaal, L., & Blust, R. (2014). Expression of obesity markers and persistent organic pollutants levels in adipose tissue of obese patients: reinforcing the obesogen hypothesis? PLoS One, 9, e84816.CrossRefGoogle Scholar
  209. Petzold, A., Solimena, M., & Knoch, K. P. (2015). Mechanisms of beta cell dysfunction associated with viral infection. Current Diabetes Reports, 15, 73.CrossRefGoogle Scholar
  210. Peverly, A. A., O’Sullivan, C., Liu, L. Y., Venier, M., Martinez, A., Hornbuckle, K. C., & Hites, R. A. (2015). Chicago’s Sanitary and Ship Canal sediment: polycyclic aromatic hydrocarbons, polychlorinated biphenyls, brominated flame retardants, and organophosphate esters. Chemosphere, 134, 380–386.CrossRefGoogle Scholar
  211. Plewa, M.J. (1991). The role of plants in environmental toxicology. Illinois research Illinois Agricultural Experiment Station.Google Scholar
  212. Pogribny, I. P., & Beland, F. A. (2009). DNA hypomethylation in the origin and pathogenesis of human diseases. Cellular and Molecular Life Sciences, 66, 2249–2261.CrossRefGoogle Scholar
  213. Polyzos, S. A., Kountouras, J., Deretzi, G., Zavos, C., & Mantzoros, C. S. (2012). The emerging role of endocrine disruptors in pathogenesis of insulin resistance: a concept implicating nonalcoholic fatty liver disease. Current Molecular Medicine, 12, 68–82.CrossRefGoogle Scholar
  214. Pope, C. A., Turner, M. C., Burnett, R., Jerrett, M., Gapstur, S. M., Diver, W. R., & Brook, R. D. (2014). Relationships between fine particulate air pollution, cardiometabolic disorders and cardiovascular mortality. Circulation Research, CIRCRESAHA-114, 305060.Google Scholar
  215. Predieri, B., Iughetti, L., Guerranti, C., Bruzzi, P., Perra, G., & Focardi, S. E. (2015). High levels of perfluorooctane sulfonate in children at the onset of diabetes. International Journal of Endocrinology, 2015, 1–7.CrossRefGoogle Scholar
  216. Putila, J. J., & Guo, N. L. (2011). Association of arsenic exposure with lung cancer incidence rates in the United States. PLoS One, 6, e25886.CrossRefGoogle Scholar
  217. Qu, C. S., Ma, Z. W., Yang, J., Liu, Y., Bi, J., & Huang, L. (2012). Human exposure pathways of heavy metals in a lead-zinc mining area, Jiangsu Province, China. PLoS One, 7, e46793.CrossRefGoogle Scholar
  218. Raidl, M., & Safaii, S. (2015). The healthy diabetes plate: an evolving diabetes meal planning program. Journal of Diabetes & Metabolism, 6, 867–874.Google Scholar
  219. Rasoanaivo, P., Wright, C. W., Willcox, M. L., & Gilbert, B. (2011). Whole plant extracts versus single compounds for the treatment of malaria: synergy and positive interactions. Malaria Journal, 10, S4.CrossRefGoogle Scholar
  220. Reaves, D. K., Ginsburg, E., Bang, J. J., & Fleming, J. M. (2015). Persistent organic pollutants and obesity: are they potential mechanisms for breast cancer promotion? Endocrine-Related Cancer, 22, R69–R86.CrossRefGoogle Scholar
  221. Reddy, P. (2003). Chronic diseases. South African Health Review, 2003, 175–187.Google Scholar
  222. Rehman, A., Setter, S. M., & Vue, M. H. (2011). Drug-induced glucose alterations part 2: drug-induced hyperglycemia. Diabetes Spectrum, 24, 234–238.CrossRefGoogle Scholar
  223. Renko, M., Paalanne, N., Tapiainen, T., Hinkkainen, M., Pokka, T., Kinnula, S., & Serlo, W. (2017). Triclosan-containing sutures versus ordinary sutures for reducing surgical site infections in children: a double-blind, randomised controlled trial. The Lancet Infectious Diseases, 17, 50–57.CrossRefGoogle Scholar
  224. Rodriguez, J. (2004). Contemporary Nutrition for Latinos: A Latino Lifestyle Guide to Nutrition and Health. iUniverse.Google Scholar
  225. Rosenmai, A. K., Taxvig, C., Svingen, T., Trier, X., Vugt-Lussenburg, B. M. A., Pedersen, M., & Vinggaard, A. M. (2016). Fluorinated alkyl substances and technical mixtures used in food paper-packaging exhibit endocrine-related activity in vitro. Andrology, 4, 662–672.CrossRefGoogle Scholar
  226. Rousselle, C., Ormsby, J. N., Schaefer, B., Lampen, A., Platzek, T., Hirsch-Ernst, K., & Emond, C. (2013). Meeting report: international workshop on endocrine disruptors: exposure and potential impact on consumers’ health. Regulatory Toxicology and Pharmacology, 65, 7–11.CrossRefGoogle Scholar
  227. Russell-Jones, D., & Khan, R. (2007). Insulin-associated weight gain in diabetes—causes, effects and coping strategies. Diabetes, Obesity and Metabolism, 9, 799–812.CrossRefGoogle Scholar
  228. Safaii, S., & Raid, M. (2013). Learn diabetes meal planning skills in a virtual world. Journal of Diabetes & Metabolism, 4, 1–3.CrossRefGoogle Scholar
  229. Sanda, K. A., Grema, H. A., Geidam, Y. A., & Bukar-Kolo, Y. M. (2011). Pharmacological aspects of Psidium guajava: an update. International Journal of Pharmacology, 7, 316–324.CrossRefGoogle Scholar
  230. Sandasi, M., Kamatou, G. P., & Viljoen, A. M. (2011). Chemotaxonomic evidence suggests that Eriocephalus tenuifolius is the source of Cape chamomile oil and not Eriocephalus punctulatus. Biochemical Systematics and Ecology, 39, 328–338.CrossRefGoogle Scholar
  231. Sarma, H., Deka, S., Deka, H., & Saikia, R. R. (2012). Accumulation of heavy metals in selected medicinal plants. In D. Whitacre (Ed.), Reviews of Environmental Contamination and Toxicology. Reviews of Environmental Contamination and Toxicology (Continuation of Residue Reviews) (Vol. 214). New York: Springer.Google Scholar
  232. Saudek, C. D. (2009). Can diabetes be cured? Potential biological and mechanical approaches. JAMA, 301, 1588–1590.CrossRefGoogle Scholar
  233. Schantz, M. M., Benner, B. A., Heckert, N. A., Sander, L. C., Sharpless, K. E., Vander Pol, S. S., & Blount, B. C. (2015). Development of urine standard reference materials for metabolites of organic chemicals including polycyclic aromatic hydrocarbons, phthalates, phenols, parabens, and volatile organic compounds. Analytical and Bioanalytical Chemistry, 407, 2945–2954.CrossRefGoogle Scholar
  234. Schernthaner, G., Gross, J. L., Rosenstock, J., Guarisco, M., Fu, M., Yee, J., & Meininger, G. (2013). Canagliflozin compared with sitagliptin for patients with type 2 diabetes who do not have adequate glycemic control with metformin plus sulfonylurea. Diabetes Care, 36, 2508–2515.CrossRefGoogle Scholar
  235. Scholey, A. B., & Kennedy, D. O. (2002). Acute, dose-dependent cognitive effects of Ginkgo biloba, Panax ginseng and their combination in healthy young volunteers: differential interactions with cognitive demand. Human Psychopharmacology: Clinical and Experimental, 17, 35–44.CrossRefGoogle Scholar
  236. Semenya, S., Potgieter, M., & Erasmus, L. (2012). Ethnobotanical survey of medicinal plants used by Bapedi healers to treat diabetes mellitus in the Limpopo Province, South Africa. Journal of Ethnopharmacology, 141, 440–445.CrossRefGoogle Scholar
  237. Seneff, S., Lauritzen, A., Davidson, R., & Lentz-Marino, L. (2012). Is endothelial nitric oxide synthase a moonlighting protein whose day job is cholesterol sulfate synthesis? Implications for cholesterol transport, diabetes and cardiovascular disease. Entropy, 14, 2492–2530.CrossRefGoogle Scholar
  238. Shao, W., Liu, Q., He, X., Liu, H., Gu, A., & Jiang, Z. (2017). Association between level of urinary trace heavy metals and obesity among children aged 6–19 years: NHANES 1999–2011. Environmental Science and Pollution Research, 24, 11573–11581.CrossRefGoogle Scholar
  239. Shaw, J. E., Sicree, R. A., & Zimmet, P. Z. (2010). Global estimates of the prevalence of diabetes for 2010 and 2030. Diabetes Research and Clinical Practice, 87, 4–14.CrossRefGoogle Scholar
  240. Shi, Y., Wang, J., Pan, Y., & Cai, Y. (2012). Tissue distribution of perfluorinated compounds in farmed freshwater fish and human exposure by consumption. Environmental Toxicology and Chemistry, 31, 717–723.CrossRefGoogle Scholar
  241. Shirzad, H., & Nasri, H. (2014). Toxicity and safety of medicinal plants. Journal of HerbMed Pharmacology, 2, 21–22.Google Scholar
  242. Song, Y., Chou, E. L., Baecker, A., You, N. C. Y., Song, Y., Sun, Q., & Liu, S. (2016). Endocrine-disrupting chemicals, risk of type 2 diabetes, and diabetes-related metabolic traits: a systematic review and meta-analysis. Journal of Diabetes, 8, 516–532.CrossRefGoogle Scholar
  243. Stahl, T., Heyn, J., Thiele, H., Hüther, J., Failing, K., Georgii, S., & Brunn, H. (2009). Carryover of perfluorooctanoic acid (PFOA) and perfluorooctane sulfonate (PFOS) from soil to plants. Archives of Environmental Contamination and Toxicology, 57, 289–298.CrossRefGoogle Scholar
  244. Steenland, K., Fletcher, T., & Savitz, D. A. (2010). Epidemiologic evidence on the health effects of perfluorooctanoic acid (PFOA). Environmental Health Perspectives, 118, 1100–1108.CrossRefGoogle Scholar
  245. Street, R. A. (2012). Heavy metals in medicinal plant products—an African perspective. South African Journal of Botany, 82, 67–74.CrossRefGoogle Scholar
  246. Street, R. A., & Prinsloo, G. (2012). Commercially important medicinal plants of South Africa: a review. Journal of Chemistry, 2013, 1–16.CrossRefGoogle Scholar
  247. Su, T. C. (2016). Endocrine disrupting chemicals and risk of type 2 diabetes and cardiovascular disease: focused on phthalates and perfluorinated chemicals. Diabetes Research and Clinical Practice, 120, S11.CrossRefGoogle Scholar
  248. Su, T. C., Kuo, C. C., Hwang, J. J., Lien, G. W., Chen, M. F., & Chen, P. C. (2016). Serum perfluorinated chemicals, glucose homeostasis and the risk of diabetes in working-aged Taiwanese adults. Environment International, 88, 15–22.CrossRefGoogle Scholar
  249. Sun, Q., Cornelis, M. C., Townsend, M. K., Tobias, D. K., Eliassen, A. H., Franke, A. A., et al. (2014). Association of urinary concentrations of bisphenol A and phthalate metabolites with risk of type 2 diabetes: a prospective investigation in the Nurses’ Health Study (NHS) and NHSII cohorts. Environmental Health Perspectives, 122, 616–623.CrossRefGoogle Scholar
  250. Susan van, D., Beulens, J.W., Yvonne T. van der, S., Grobbee, D.E. & Nealb, B., 2010. The global burden of diabetes and its complications: an emerging pandemic.European Journal of Cardiovascular Prevention & Rehabilitation, 17(1_suppl), s3-s8.Google Scholar
  251. Suvarna, Y., Maity, N., Kalra, P., & Shivamurthy, M. C. (2016). Comparison of efficacy of metformin and oral contraceptive combination of ethinyl estradiol and drospirenone in polycystic ovary syndrome. Journal of the Turkish German Gynecological Association, 17, 6.CrossRefGoogle Scholar
  252. Swinnen, S. G., Dain, M. P., Aronson, R., Davies, M., Gerstein, H. C., Pfeiffer, A. F., & Holleman, F. (2010). A 24-week, randomized, treat-to-target trial comparing initiation of insulin glargine once-daily with insulin detemir twice-daily in patients with type 2 diabetes inadequately controlled on oral glucose-lowering drugs. Diabetes Care, 33, 1176–1178.CrossRefGoogle Scholar
  253. Tag, H., Kalita, P., Dwivedi, P., Das, A. K., & Namsa, N. D. (2012). Herbal medicines used in the treatment of diabetes mellitus in Arunachal Himalaya, northeast, India. Journal of Ethnopharmacology, 141, 786–795.CrossRefGoogle Scholar
  254. Tahrani, A. A., Bailey, C. J., Del Prato, S., & Barnett, A. H. (2011). Management of type 2 diabetes: new and future developments in treatment. The Lancet, 378, 182–197.CrossRefGoogle Scholar
  255. Tamilselvan, N., Thirumalai, T., Shyamala, P., & David, E. (2014). A review on some poisonous plants and their medicinal values. Journal of Acute Disease, 3, 85–89.CrossRefGoogle Scholar
  256. Tausk, F. A. (1998). Alternative medicine: is it all in your mind? Archives of Dermatology, 134, 1422–1425.CrossRefGoogle Scholar
  257. Taylor, A. E., Ebrahim, S., Ben-Shlomo, Y., Martin, R. M., Whincup, P. H., Yarnell, J. W., & Lawlor, D. A. (2010). Comparison of the associations of body mass index and measures of central adiposity and fat mass with coronary heart disease, diabetes, and all-cause mortality: a study using data from 4 UK cohorts. The American Journal of Clinical Nutrition, 91, 547–556.CrossRefGoogle Scholar
  258. Taylor, K. W., Novak, R. F., Anderson, H. A., Birnbaum, L. S., Blystone, C., DeVito, M., et al. (2013). Evaluation of the association between persistent organic pollutants (POPs) and diabetes in epidemiological studies: a national toxicology program workshop review. Environmental Health Perspectives, 121, 774–783.CrossRefGoogle Scholar
  259. Tchounwou, P. B., Yedjou, C. G., Patlolla, A. K., & Sutton, D. J. (2012). Heavy metal toxicity and the environment. In Molecular, clinical and environmental toxicology (pp. 133–164). Basel: Springer.CrossRefGoogle Scholar
  260. Teichert, T., & Herder, C. (2016). Air pollution, subclinical inflammation and the risk of type 2 diabetes. In Environmental Influences on the Immune System (pp. 243–271). Vienna: Springer.CrossRefGoogle Scholar
  261. Thiering, E., Cyrys, J., Kratzsch, J., Meisinger, C., Hoffmann, B., Berdel, D., & Heinrich, J. (2013). Long-term exposure to traffic-related air pollution and insulin resistance in children: results from the GINIplus and LISAplus birth cohorts. Diabetologia, 56, 1696–1704.CrossRefGoogle Scholar
  262. Thomas, L. D., Hodgson, S., Nieuwenhuijsen, M., & Jarup, L. (2009). Early kidney damage in a population exposed to cadmium and other heavy metals. Environmental Health Perspectives, 117, 181.CrossRefGoogle Scholar
  263. Thring, T. S. A., & Weitz, F. M. (2006). Medicinal plant use in the Bredasdorp/Elim region of the Southern Overberg in the Western Cape Province of South Africa. Journal of Ethnopharmacology, 103, 261–275.CrossRefGoogle Scholar
  264. Timmermann, C. A. G., Rossing, L. I., Grøntved, A., Ried-Larsen, M., Dalgård, C., Andersen, L. B., & Jensen, T. K. (2014). Adiposity and glycemic control in children exposed to perfluorinated compounds. The Journal of Clinical Endocrinology & Metabolism, 99, E608–E614.CrossRefGoogle Scholar
  265. Tsakas, M. P., Siskos, A. P., & Siskos, P. (2011). Indoor air pollutants and the impact on human health. In Chemistry, Emission Control, Radioactive Pollution and Indoor Air Quality. InTech.Google Scholar
  266. van de Venter, M., Roux, S., Bungu, L. C., Louw, J., Crouch, N. R., Grace, O. M., & Folb, P. (2008). Antidiabetic screening and scoring of 11 plants traditionally used in South Africa. Journal of Ethnopharmacology, 119, 81–86.CrossRefGoogle Scholar
  267. van Vuuren, S., & Viljoen, A. (2011). Plant-based antimicrobial studies—methods and approaches to study the interaction between natural products. Planta Medica, 77, 1168–1182.CrossRefGoogle Scholar
  268. Van Wyk, B. E. (2008). A broad review of commercially important southern African medicinal plants. Journal of Ethnopharmacology, 119, 342–355.CrossRefGoogle Scholar
  269. Van Wyk, B. E., & Albrecht, C. (2008). A review of the taxonomy, ethnobotany, chemistry and pharmacology of Sutherlandia frutescens (Fabaceae). Journal of Ethnopharmacology, 119, 620–629.CrossRefGoogle Scholar
  270. Vasiliu, O., Cameron, L., Gardiner, J., DeGuire, P., & Karmaus, W. (2006). Polybrominated biphenyls, polychlorinated biphenyls, body weight, and incidence of adult-onset diabetes mellitus. Epidemiology, 17, 352–359.CrossRefGoogle Scholar
  271. Vlietinck, A. J., Pieters, L., Apers, S., Cimanga, K., Mesia, K., & Tona, L. (2015). The value of central-African traditional medicine for lead finding: some case studies. Journal of Ethnopharmacology, 174, 607–617.CrossRefGoogle Scholar
  272. Wang, B., Xu, D., Jing, Z., Liu, D., Yan, S., & Wang, Y. (2014). Mechanisms in endocrinology: effect of long-term exposure to air pollution on type 2 diabetes mellitus risk: a systemic review and meta-analysis of cohort studies. European Journal of Endocrinology, 171, R173–R182.CrossRefGoogle Scholar
  273. Wang, X., Halsall, C., Codling, G., Xie, Z., Xu, B., Zhao, Z., & Jones, K. C. (2013). Accumulation of perfluoroalkyl compounds in Tibetan mountain snow: temporal patterns from 1980 to 2010. Environmental Science & Technology, 48, 173–181.CrossRefGoogle Scholar
  274. Wang, X., Liu, L., Zhang, W., Zhang, J., Du, X., Huang, Q., & Shen, H. (2017). Serum metabolome biomarkers associate low-level environmental perfluorinated compound exposure with oxidative/nitrosative stress in humans. Environmental Pollution, 229, 168–176.CrossRefGoogle Scholar
  275. Wang, Z., Nishioka, M., Kurosaki, Y., Nakayama, T., & Kimura, T. (1995). Gastrointestinal absorption characteristics of glycyrrhizin from glycyrrhiza extract. Biological and Pharmaceutical Bulletin, 18, 1238–1241.CrossRefGoogle Scholar
  276. Waugh, A., & Grant, A. (2014). Ross & Wilson anatomy and physiology in health and illness. Elsevier Health Sciences.Google Scholar
  277. Wen, B., Wu, Y., Zhang, H., Liu, Y., Hu, X., Huang, H., & Zhang, S. (2016). The roles of protein and lipid in the accumulation and distribution of perfluorooctane sulfonate (PFOS) and perfluorooctanoate (PFOA) in plants grown in biosolids-amended soils. Environmental Pollution, 216, 682–688.CrossRefGoogle Scholar
  278. Whiting, D. R., Guariguata, L., Weil, C., & Shaw, J. (2011). IDF diabetes atlas: global estimates of the prevalence of diabetes for 2011 and 2030. Diabetes Research and Clinical Practice, 94, 311–321.CrossRefGoogle Scholar
  279. Whitworth, K. W., Haug, L. S., Baird, D. D., Becher, G., Hoppin, J. A., Skjaerven, R., & Cupul-Uicab, L. A. (2012a). Perfluorinated compounds in relation to birth weight in the Norwegian Mother and Child Cohort Study. American Journal of Epidemiology, 175, 1209–1216.CrossRefGoogle Scholar
  280. Whitworth, K. W., Haug, L. S., Baird, D. D., Becher, G., Hoppin, J. A., Skjaerven, R., & Longnecker, M. P. (2012b). Perfluorinated compounds and subfecundity in pregnant women. Epidemiology (Cambridge, Mass.), 23, 257.CrossRefGoogle Scholar
  281. WHO, World Health Organisation Consultation. (1999). Definition, diagnosis and classification of diabetes mellitus and its complications. WHO/NCD/NCS/99.2. Available Online: https://www.staff.ncl.ac.uk/philip.home/who_dmg.pdf. Accessed on 22 June 2017.
  282. WHO, World Health Organisation. (1994). Prevention of diabetes mellitus technical report series: 844 (pp. 1–108). Geneva: World Health Organization.Google Scholar
  283. Wijesekara, N., Dai, F. F., Hardy, A. B., Giglou, P. R., Bhattacharjee, A., Koshkin, V., & Wheeler, M. B. (2010). Beta cell-specific Znt8 deletion in mice causes marked defects in insulin processing, crystallisation and secretion. Diabetologia, 53, 1656–1668.CrossRefGoogle Scholar
  284. Williamson, E. M. (2001). Synergy and other interactions in phytomedicines. Phytomedicine, 8, 401–409.CrossRefGoogle Scholar
  285. Xu, L. J., Chu, W., Lee, P. H., & Wang, J. (2016). The mechanism study of efficient degradation of hydrophobic nonylphenol in solution by a chemical-free technology of sonophotolysis. Journal of Hazardous Materials, 308, 386–393.CrossRefGoogle Scholar
  286. Xu, X., Liu, C., Xu, Z., Tzan, K., Zhong, M., Wang, A., & Sun, Q. (2011). Long-term exposure to ambient fine particulate pollution induces insulin resistance and mitochondrial alteration in adipose tissue. Toxicological Sciences, 124, 88–98.CrossRefGoogle Scholar
  287. Yach, D., Hawkes, C., Gould, C. L., & Hofman, K. J. (2004). The global burden of chronic diseases: overcoming impediments to prevention and control. JAMA, 291, 2616–2622.CrossRefGoogle Scholar
  288. Yang, X., Ye, C., Liu, Y., & Zhao, F. J. (2015). Accumulation and phytotoxicity of perfluorooctanoic acid in the model plant species Arabidopsis thaliana. Environmental Pollution, 206, 560–566.CrossRefGoogle Scholar
  289. Yao, Y., Sun, H., Gan, Z., Hu, H., Zhao, Y., Chang, S., & Zhou, Q. (2016). Nationwide distribution of per-and polyfluoroalkyl substances in outdoor dust in mainland China from eastern to western areas. Environmental Science & Technology, 50, 3676–3685.CrossRefGoogle Scholar
  290. Yarnell, E. (2014). Artemisia annua (sweet Annie), other Artemisia species, artemisinin, artemisinin derivatives, and malaria. Journal of Restorative Medicine, 3, 69–84.CrossRefGoogle Scholar
  291. Yarnell, E. (2015). Synergy in herbal medicines: part 1. Journal of Restorative Medicine, 4, 60–73.CrossRefGoogle Scholar
  292. Yue, G., Wei, J., Qian, X., Yu, L., Zou, Z., Guan, W., & Liu, B. (2013). Synergistic anticancer effects of polyphyllin I and evodiamine on freshly-removed human gastric tumors. PLoS One, 8, e65164.CrossRefGoogle Scholar
  293. Yurdakök, K. (2015). Lead, mercury, and cadmium in breast milk. Journal of Pediatric and Neonatal Individualized Medicine, 4, e040223.Google Scholar
  294. Zapata, P. J., Navarro, D., Guillén, F., Castillo, S., Martínez-Romero, D., Valero, D., & Serrano, M. (2013). Characterization of gels from different Aloe spp. as antifungal treatment: potential crops for industrial applications. Industrial Crops and Products, 42, 223–230.CrossRefGoogle Scholar
  295. Zhang, A., Sun, H., & Wang, X. (2014). Potentiating therapeutic effects by enhancing synergism based on active constituents from traditional medicine. Phytotherapy Research, 28, 526–533.CrossRefGoogle Scholar
  296. Zhang, Q., Wang, Q., Jiang, J., Zhan, X., & Chen, F. (2015). Microphase structure, crystallization behavior, and wettability properties of novel fluorinated copolymers poly (perfluoroalkyl acrylate-co-stearyl acrylate) containing short perfluorohexyl chains. Langmuir, 31, 4752–4760.CrossRefGoogle Scholar
  297. Zhao, H., Guan, Y., & Qu, B. (2017). PFCA uptake and translocation in dominant wheat species (Triticum aestivum L.). International Journal of Phytoremediation.  https://doi.org/10.1080/15226514.2017.1337066.
  298. Zhao, S., & Zhu, L. (2017). Uptake and metabolism of 10: 2 fluorotelomer alcohol in soil-earthworm (Eisenia fetida) and soil-wheat (Triticum aestivum L.) systems. Environmental Pollution, 220, 124–131.CrossRefGoogle Scholar
  299. Zheng, W., McLerran, D. F., Rolland, B., Zhang, X., Inoue, M., Matsuo, K., & Irie, F. (2011). Association between body-mass index and risk of death in more than 1 million Asians. New England Journal of Medicine, 364, 719–729.CrossRefGoogle Scholar
  300. Zhou, L., Xia, M., Wang, L., & Mao, H. (2016a). Toxic effect of perfluorooctanoic acid (PFOA) on germination and seedling growth of wheat (Triticum aestivum L.). Chemosphere, 159, 420–425.CrossRefGoogle Scholar
  301. Zhou, X., Seto, S. W., Chang, D., Kiat, H., Razmovski-Naumovski, V., Chan, K., & Bensoussan, A. (2016b). Synergistic effects of Chinese herbal medicine: a comprehensive review of methodology and current research. Frontiers in Pharmacology, 7, 201.Google Scholar
  302. Zinman, B., Wanner, C., Lachin, J.M., Fitchett, D., Bluhmki, E., Hantel, S., Mattheus, M., Devins, T., Johansen, O.E., Woerle, H.J. and Broedl, U.C. (2015). Empagliflozin, cardiovascular outcomes, and mortality in type 2 diabetes. New England Journal of Medicine, 373, 2117–2128.Google Scholar
  303. Zimmet, P. (2000). Globalization, coca-colonization and the chronic disease epidemic: can the Doomsday scenario be averted? Journal of Internal Medicine, 247, 301–310.CrossRefGoogle Scholar
  304. Zimmet, P., Alberti, K. G. M. M., & Shaw, J. (2001). Global and societal implications of the diabetes epidemic. Nature, 414, 782–787.CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Bioresource Engineering Research Group (BioERG), Department of BiotechnologyCape Peninsula University of TechnologyCape TownSouth Africa
  2. 2.Department of Chemical EngineeringUniversity of JohannesburgJohannesburgSouth Africa
  3. 3.Department of Bio-Medical sciences, Faculty of Health and Wellness ScienceCape Peninsula University of TechnologyBellvilleSouth Africa

Personalised recommendations