Evaluation of metal removal efficiency and its influence in the physicochemical parameters at two sewage treatment plants

  • Angelo R. F. Pipi
  • Aroldo G. Magdalena
  • Giselda P. Giafferis
  • Gustavo H. R. da Silva
  • Marina Piacenti-Silva


In sewage treatment plants, physicochemical parameters are highly controlled since treated sewage can be returned to water bodies or reused. In addition, pollutants such as heavy metals also deserve attention due to their potential toxicity. In general, these characteristics of sewage and treated water are evaluated independently, with the support of Brazilian legislation that does not require a routine for the analysis of metals as frequent as for the physicochemical parameters. In this work, 66 samples of raw sewage, treated sewage, and effluents from two treatment plants in the city of Bauru, São Paulo, Brazil, were evaluated to assess the efficiency of the treatment plants in the removal of metals. In addition, the influence of these pollutants on the quantification of physicochemical parameters was evaluated. The quantification of metals was performed using inductively coupled plasma optical spectroscopy (ICP-OES), and Spearman’s test was applied to evaluate correlation between physicochemical parameters and metal content. The main metals found in the samples were Ba, Mn, Zn, Cu, Se, Fe, and Al. The results indicate that concentrations of metals in the aquatic environment can significantly affect the physicochemical parameters, since high concentrations of metals can interfere mainly in the pH, chemical oxygen demand, and dissolved oxygen.


Heavy metal Physicochemical parameters Sewage treatment plant 



The authors thank to Elieni G. Pinheiro and Gabriel A. Canevari for the technical assistance.

Funding information

This study was funded by FAPESP—São Paulo Research Foundation (grant number 2015/22864-2).

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.


  1. Alves, E. C., Silva, C. F., et al. (2008). Avaliação da qualidade da água da bacia do rio Pirapó – Maringá, Estado do Paraná, por meio de parâmetros físico, químicos e microbiológicos. Acta Scientiarum Technology, 30(1), 39–48.CrossRefGoogle Scholar
  2. APHA (2005). Standard methods for examination of water and wastewater. United States of America, American Public Healthy Association.Google Scholar
  3. Campbell, A. (2002). The potential role of aluminium in Alzheimer’s disease. Nephrology Dialysis Transplantation, 17, 17–20.CrossRefGoogle Scholar
  4. Capellini, V. L. M. F., Rodrigues, O. M. P. R., Melchiori, L. E., & Valle, T. G. M. . (2008). Crianças Contaminadas por Chumbo: estudo comparativo sobre desempenho escolar. Estudos em Avaliação Educacional, 19(39), 155–180.CrossRefGoogle Scholar
  5. CETESB (2013). Ficha de Informação Toxicológica. Divisão de Toxicologia, Genotoxicidade e Microbiologia Ambiental. Google Scholar
  6. CONAMA (2005). Resolução CONAMA N° 357/2005 Publicação DOU n° 053, de 18/03/2005, Ministério do meio ambiente, Conselho nacional do meio ambiente.Google Scholar
  7. CONAMA (2011). Resolução CONAMA N° 430/2011 Publicação DOU n° 92, de 16/05/2011, pág. 89 Ministério do meio ambiente, Conselho nacional do meio ambiente.Google Scholar
  8. Conover, W. (1980). Practical nonparametric statistic. New York, John Whiley & Sons.Google Scholar
  9. de Vives, A. E. S., Moreira, S., Brienza, S. M. B., Medeiros, J. G. S., Filho, M. T., Zucchi, O. L. A. D., & Filho, V. F. N. (2006). Monitoring of the environmental pollution by trace element analysis in tree-rings using synchrotron radiation total reflection X-ray fluorescence. Spectrochimica Acta Part B: Atomic Spectroscopy, 61(10–11), 1170–1174.CrossRefGoogle Scholar
  10. El Samrani, A. G., Lartiges, B. S., et al. (2008). Chemical coagulation of combined sewer overflow: Heavy metal removal and treatment optimization. Water Research, 42(4–5), 951–960.CrossRefGoogle Scholar
  11. Englert, N. (2004). Fine particles and human health—a review of epidemiological studies. Toxicology Letters, 149(1–3), 235–242.CrossRefGoogle Scholar
  12. Esteves, F. A. (2011). Fundamentos De Limnologia, Editora Interciência.Google Scholar
  13. Fiorucci, A. R. and E. Benedetti-Filho (2005). A importância do oxigênio dissolvido em ecossistemas aquáticos. Química nova na escola 22: 10–16.Google Scholar
  14. Förstner, U. and G. T. W. Wittmann (2012). Metal pollution in the aquatic environment, Springer Science & Business Media.Google Scholar
  15. Gomes, V. M., Magdalena, A. G., et al. (2017). Study of mobility and environmental contamination by chromium from tannery industry in two streams in the Town of Dobrada in the state of São Paulo, Brazil. Revista Virtual de Química, 9(5), 1840–1852.CrossRefGoogle Scholar
  16. IBGE (2016). Estimativas da população residente nos municípios brasileiros, Ministério do Planejamento, Desenvolvimento e Gestão.Google Scholar
  17. Järup, L. (2003). Hazards of heavy metal contamination. British Medical Bulletin, 68(1), 167–182.CrossRefGoogle Scholar
  18. Jordão, C.P., Pereira, M.G., et al. (2005). Influence of domestic and industrial waste discharges on water quality at Minas Gerais State, Brazil. Journal of the Brazilian Chemical Society 16(2), 241–250.Google Scholar
  19. Khan, T. A. (2011). Trace elements in the drinking water and their possible health effects in Aligarh City, India. Journal of Water Resource and Protection, 3(7), 522–530.CrossRefGoogle Scholar
  20. Kumar, R., Rani, M., Gupta, H., & Gupta, B. (2014). Trace metal fractionation in water and sediments of an urban river stretch. Chemical Speciation and Bioavailability, 26(4), 200–209.CrossRefGoogle Scholar
  21. Miranda, R. G., Pereira, S. D. F. P., et al. (2009). Quality of water resources in the Amazon region- Rio Tapajós: assessing the case for chemical elements and physical-chemical parameters. Ambiente e Agua - An Interdisciplinary Journal of Applied Science, 4(2), 18.CrossRefGoogle Scholar
  22. Mulchandani, A., & Westerhoff, P. (2016). Recovery opportunities for metals and energy from sewage sludges. Bioresource Technology , 215, 215–226.CrossRefGoogle Scholar
  23. Nriagu, J. O., & Pacyna, J. M. (1988). Quantitative assessment of worldwide contamination of air, water and soils by trace-metals. Nature , 333(6169), 134–139.CrossRefGoogle Scholar
  24. Oliveira, B. S. S., & Cunha, A. C. (2014). Correlação entre qualidade da água e variabilidade da precipitação no sul do Estado do Amapá. Revista Ambiente & Água, 9(2), 261–275.Google Scholar
  25. Vasconcellos, P. C., Balasubramanian, R., Bruns, R. E., Sanchez-Ccoyllo, O., Andrade, M. F., & Flues, M. (2007). Water-soluble ions and trace metals in airborne particles over urban areas of the state of Sao Paolo, Brazil: Influences of local sources and long range transport. Water Air and Soil Pollution, 186(1–4), 63–73.CrossRefGoogle Scholar
  26. Von-Sperling, M., Chernicharo, C. A. L. (2005). Biological wastewater treatment in warm climate regions. London: IWA Publishing.Google Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Pró-Reitoria de Pesquisa e Pós Graduação (PRPPG)Universidade do Sagrado Coração (USC)BauruBrazil
  2. 2.Faculdade de Ciências, Departamento de QuímicaUniversidade Estadual Paulista (Unesp)BauruBrazil
  3. 3.Departamento de Água e Esgoto de BauruPrefeitura de BauruBauruBrazil
  4. 4.Faculdade de Engenharia, Departamento de Engenharia de CivilUniversidade Estadual Paulista (Unesp)BauruBrazil
  5. 5.Faculdade de Ciências, Instituto de Pesquisas Meteorológicas (IPMet), Departamento de FísicaUniversidade Estadual Paulista (Unesp)BauruBrazil

Personalised recommendations