Skip to main content

Advertisement

Log in

Simultaneous determination of estrone and selected pesticides in water medium by GC-MS after multivariate optimization of microextraction strategy

  • Published:
Environmental Monitoring and Assessment Aims and scope Submit manuscript

Abstract

A sensitive and accurate analytical method based on dispersive liquid-liquid microextraction was developed for the simultaneous determination of selected pesticides, hormones, and endocrine disruptors by GC-MS. The optimum conditions of the extraction procedure were determined using an experimental design of factors significantly affecting the extraction output. Analysis of variance (ANOVA) was used to evaluate the main effects of experimental factors and their interactions. The limit of detection values determined for the analytes under optimum experimental conditions were found to be between 0.30–2.0 ng/mL. The linear calibration plot of analytes span across a wide concentration range and low %RSD values from replicate measurements indicated good precision of the developed method. Spiked recovery tests were also performed on municipal wastewater, well water, lake water, sea water, and tap water matrices to determine the method’s accuracy and applicability to water samples. The recovery results obtained were satisfactory for all water samples.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Explore related subjects

Discover the latest articles and news from researchers in related subjects, suggested using machine learning.

References

  • Akhgari, M., Abdollahi, M., Kebryaeezadeh, A., Hosseini, R., & Sabzevari, O. (2003). Biochemical evidence for free radicalinduced lipid peroxidation as a mechanism for subchronic toxicity of malathion in blood and liver of rats. Human & Experimental Toxicology, 22(4), 205–211. https://doi.org/10.1191/0960327103ht346oa.

    Article  CAS  Google Scholar 

  • Aktar, M. W., Sengupta, D., & Chowdhury, A. (2009). Impact of pesticides use in agriculture: their benefits and hazards. Interdisciplinary Toxicology, 2(1), 1–12. https://doi.org/10.2478/v10102-009-0001-7.

    Article  Google Scholar 

  • Alavanja, M. C. R., Ross, M. K., & Bonner, M. R. (2013). Increased cancer burden among pesticide applicators and others due to pesticide exposure. CA: a Cancer Journal for Clinicians, 63(2), 120–142. https://doi.org/10.3322/caac.21170.

    Google Scholar 

  • Bala, R., Sharma, R. K., & Wangoo, N. (2015). Highly sensitive colorimetric detection of ethyl parathion using gold nanoprobes. Sensors and Actuators B: Chemical, 210(Supplement C), 425–430. https://doi.org/10.1016/j.snb.2014.12.123.

    Article  CAS  Google Scholar 

  • Biparva, P., & Matin, A. A. (2012). Microextraction techniques as a sample preparation step for metal analysis. In M. A. Farrukh (Ed.), Atomic absorption spectroscopy (pp. 61–88): InTech.

  • Brauns, B., Jakobsen, R., Song, X., & Bjerg, P. L. (2018). Pesticide use in the wheat-maize double cropping systems of the North China Plain: assessment, field study, and implications. Science of the Total Environment. https://doi.org/10.1016/j.scitotenv.2017.10.187.

  • Carneiro, R. P., Oliveira, F. A. S., Madureira, F. D., Silva, G., de Souza, W. R., & Lopes, R. P. (2013). Development and method validation for determination of 128 pesticides in bananas by modified QuEChERS and UHPLC–MS/MS analysis. Food Control, 33(2), 413–423. https://doi.org/10.1016/j.foodcont.2013.02.027.

    Article  CAS  Google Scholar 

  • Chormey, D. S., Büyükpınar, Ç., Turak, F., Komesli, O. T., & Bakırdere, S. (2017a). Simultaneous determination of selected hormones, endocrine disruptor compounds, and pesticides in water medium at trace levels by GC-MS after dispersive liquid-liquid microextraction. Environmental Monitoring and Assessment, 189(6), 277. https://doi.org/10.1007/s10661-017-6003-6.

    Article  Google Scholar 

  • Chormey, D. S., Karakuş, Y., Karayaka, S., Özsöyler, Ç., Bozdoğan, A. E., & Bakırdere, S. (2017b). Multivariate optimization of dispersive liquid–liquid microextraction for the determination of paclobutrazol and triflumizole in water by GC–MS. Journal of Separation Science, n/a-n/a, 40, 4541–4548. https://doi.org/10.1002/jssc.201700853.

    Article  CAS  Google Scholar 

  • Chu, X.-G., Hu, X.-Z., & Yao, H.-Y. (2005). Determination of 266 pesticide residues in apple juice by matrix solid-phase dispersion and gas chromatography–mass selective detection. Journal of Chromatography A, 1063(1), 201–210. https://doi.org/10.1016/j.chroma.2004.12.003.

    Article  CAS  Google Scholar 

  • Cox, M. K., Peterson, K. N., Tan, D., Novak, P. J., Schoenfuss, H. L., & Ward, J. L. (2017). Temperature modulates estrone degradation and biological effects of exposure in fathead minnows. Science of the Total Environment, 621, 1591–1600. https://doi.org/10.1016/j.scitotenv.2017.10.069.

    Article  Google Scholar 

  • Crutchfield, C. A., Lu, W., Melamud, E., & Rabinowitz, J. D. (2010). Chapter 16—Mass spectrometry-based metabolomics of yeast. In Methods in enzymology (Vol. Volume 470, pp. 393–426): Academic Press.

  • Facure, M. H. M., Mercante, L. A., Mattoso, L. H. C., & Correa, D. S. (2017). Detection of trace levels of organophosphate pesticides using an electronic tongue based on graphene hybrid nanocomposites. Talanta, 167(Supplement C), 59–66. https://doi.org/10.1016/j.talanta.2017.02.005.

    Article  CAS  Google Scholar 

  • He, T.-T., Zuo, A.-J., Wang, J.-G., & Zhao, P. (2017). Organochlorine pesticides accumulation and breast cancer: a hospital-based case–control study. Tumor Biology, 39(5), 1010428317699114. https://doi.org/10.1177/1010428317699114.

    Google Scholar 

  • Hutson, D. H., & Miyamoto, J. (1998). Fungicide classes: chemistry, uses and mode of action. In Fungicidal activity: chemical and biological approaches to plant protection. United Kingdom: Wiley.

  • Jahanmard, E., Ansari, F., & Feizi, M. (2016). Evaluation of Quechers sample preparation and GC mass spectrometry method for the determination of 15 pesticide residues in tomatoes used in salad production plants. Iranian Journal of Public Health, 45(2), 230–238.

    Google Scholar 

  • Koçoğlu, E. S., Bakırdere, S., & Keyf, S. (2017). A novel liquid–liquid extraction for the determination of sertraline in tap water and waste water at trace levels by GC–MS. Bulletin of Environmental Contamination and Toxicology, 99(3), 354–359. https://doi.org/10.1007/s00128-017-2118-2.

    Article  Google Scholar 

  • Kopper, N. W., Gudeman, J., & Thompson, D. J. (2008). Transdermal hormone therapy in postmenopausal women: a review of metabolic effects and drug delivery technologies. Drug Design, Development and Therapy, 2, 193–202.

    Article  CAS  Google Scholar 

  • Labrie, F., Cusan, L., Gomez, J. L., Cote, I., Berube, R., Belanger, P., et al. (2009). Effect of one-week treatment with vaginal estrogen preparations on serum estrogen levels in postmenopausal women. Menopause-the Journal of the North American Menopause Society, 16(1), 30–36. https://doi.org/10.1097/gme.0b013e31817b6132.

    Article  Google Scholar 

  • Lazic, Z. R. (2006). Design of experiments in chemical engineering: a practical guide: Wiley.

  • Machado, I., Gérez, N., Pistón, M., Heinzen, H., & Cesio, M. V. (2017). Determination of pesticide residues in globe artichoke leaves and fruits by GC–MS and LC–MS/MS using the same QuEChERS procedure. Food Chemistry, 227, 227–236. https://doi.org/10.1016/j.foodchem.2017.01.025.

    Article  CAS  Google Scholar 

  • Perdichizzi, S., Mascolo, M. G., Silingardi, P., Morandi, E., Rotondo, F., Guerrini, A., Prete, L., Vaccari, M., & Colacci, A. (2014). Cancer-related genes transcriptionally induced by the fungicide penconazole. Toxicology In Vitro, 28(1), 125–130. https://doi.org/10.1016/j.tiv.2013.06.006.

    Article  CAS  Google Scholar 

  • Primel, E. G., Caldas, S. S., Marube, L. C., & Escarrone, A. L. V. (2017). An overview of advances in dispersive liquid–liquid microextraction for the extraction of pesticides and emerging contaminants from environmental samples. Trends in Environmental Analytical Chemistry, 14, 1–18. https://doi.org/10.1016/j.teac.2017.03.001.

    Article  CAS  Google Scholar 

  • Pukkila, V., & Kontro, M. H. (2014). Dichlobenil and 2,6-dichlorobenzamide (BAM) dissipation in topsoil and deposits from groundwater environment within the boreal region in southern Finland. Environmental Science and Pollution Research, 21(3), 2289–2297. https://doi.org/10.1007/s11356-013-2164-1.

    Article  CAS  Google Scholar 

  • Rathnayake, L. K., & Northrup, S. H. (2016). Structure and mode of action of organophosphate pesticides: a computational study. Computational and Theoretical Chemistry, 1088, 9–23. https://doi.org/10.1016/j.comptc.2016.04.024.

    Article  CAS  Google Scholar 

  • Rezaee, M., Assadi, Y., Milani Hosseini, M.-R., Aghaee, E., Ahmadi, F., & Berijani, S. (2006). Determination of organic compounds in water using dispersive liquid–liquid microextraction. Journal of Chromatography A, 1116, 1), 1–1), 9. https://doi.org/10.1016/j.chroma.2006.03.007.

    Article  Google Scholar 

  • Rose, G., Lane, S., & Jordan, R. (2009). The fate of fungicide and insecticide residues in Australian wine grape by-products following field application. Food Chemistry, 117(4), 634–640. https://doi.org/10.1016/j.foodchem.2009.04.061.

    Article  CAS  Google Scholar 

  • Rutkowska, M., Dubalska, K., Konieczka, P., & Namieśnik, J. (2014). Microextraction techniques used in the procedures for determining organomercury and organotin compounds in environmental samples. Molecules, 19, 7581–7609. https://doi.org/10.3390/molecules19067581.

    Article  Google Scholar 

  • Sandín-España, P., & Sevilla-Morán, B. (2012). Pesticide degradation in water. In H. S. Rathore, & L. M. L. Nollet (Eds.) Pesticides: evaluation of environmental pollution (pp. 89): CRC Press.

  • Santos, I. C., & Schug, K. A. (2017). Recent advances and applications of gas chromatography vacuum ultraviolet spectroscopy. Journal of Separation Science, 40(1), 138–151. https://doi.org/10.1002/jssc.201601023.

    Article  CAS  Google Scholar 

  • Turan, N. B., Chormey, D. S., Büyükpınar, Ç., Engin, G. O., & Bakirdere, S. (2017). Quorum sensing: little talks for an effective bacterial coordination. TrAC Trends in Analytical Chemistry, 91, 1–11. https://doi.org/10.1016/j.trac.2017.03.007.

    Article  CAS  Google Scholar 

  • Vetter, W. (2012). Chapter 3—Polyhalogenated Alkaloids in environmental and food samples. In K. Hans-Joachim (Ed.), The alkaloids: chemistry and biology (Vol. Volume 71, pp. 211–276): Academic Press.

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Ayşe Evrim Bulgurcuoğlu or Sezgin Bakırdere.

Ethics declarations

Conflict of interest statement

The authors declare that they have no conflict of interest.

Electronic supplementary material

ESM 1

(DOCX 16 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bulgurcuoğlu, A.E., Yılmaz, B., Chormey, D.S. et al. Simultaneous determination of estrone and selected pesticides in water medium by GC-MS after multivariate optimization of microextraction strategy. Environ Monit Assess 190, 252 (2018). https://doi.org/10.1007/s10661-018-6625-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10661-018-6625-3

Keywords

Profiles

  1. Ayşe Evrim Bulgurcuoğlu