Agriculture and elevation are the main factors for Pampasic stream habitat and water quality

  • Rafael Arocena
  • Guillermo Chalar
  • Juan Pablo Pacheco
Article
  • 53 Downloads

Abstract

Streams of the Pampasic plain in Southeastern South America are ecosystems affected by both water pollution and habitat alteration mainly due to agricultural activity. Water quality is influenced by the quality of habitats and both depend on land use and watershed morphology. The objective of this study was to determine the relationship between the variables of four factors: (1) the morphology of the watershed, (2) land use in the watershed, (3) river habitat, and (4) water quality of wadeable streams in Uruguay, as well as to determine the most representative variables to quantify such factors. We studied 28 watersheds grouped into three ecoregions and four principal activities, which generated seven zones with three to five streams each. Correlations between the variables of each factor allowed reducing the total number of variables from 57 to 32 to perform principal component analyses (PCA) by factor, reducing the number of variables to 18 for a general PCA. The first component was associated with water quality and elevation. The second was associated with the stream and watershed size, the third with habitat quality, and the fourth to the use of neighboring soils and objects in the channel. Our results indicate that agricultural intensity and elevation are the main factors associated with the habitat and water quality of these lowland streams. These factors must be especially considered in the development of water quality monitoring programs.

Keywords

Watershed morphology Land use Habitat Wadeable plain rivers 

Notes

Acknowledgements

We are grateful to all colleagues who contributed to developing this study and two anonymous reviewers who improved greatly this article. We also thank Christine Lucas for her valuable suggestions to improve the manuscript.

References

  1. Amuchástegui, G., di Franco, L., & Feijoo, C. (2016). Catchment morphometric characteristics, land use and water chemistry in Pampean streams: a regional approach. Hydrobiologia, 767, 65–79.CrossRefGoogle Scholar
  2. APHA. (1995). Standard methods for the examination of water and wastewater. Washington: APHA/AWWA/WPCF.Google Scholar
  3. Arocena Real de Azúa, R., González Bermúdez, C., & Chalar Marquisá, G. (2016). La autodepuración en arroyos de planicie puede interrumpirse por el ingreso de desechos vitivinícolas según el biomonitoreo con macroinvertebrados. Hidrobiológica, 26, 383–394.Google Scholar
  4. Arocena, R., Chalar G., Fabián D., de León L., Brugnoli E., Silva M., Rodó E., Machado I., Pacheco J. P., Castiglioni R., Gabito, L. (2008). Evaluación ecológica de cursos de agua y biomonitoreo. Final Report. DINAMA - Facultad de Ciencias. http://limno.fcien.edu.uy/. Accessed 12 Aug 2017.
  5. Bailey, D., Billeter, R., Aviron, S., Schweiger, O., & Herzog, F. (2007). The influence of thematic resolution on metric selection for biodiversity monitoring in agricultural landscapes. Landscape Ecology, 22, 461–473.CrossRefGoogle Scholar
  6. Baldi, G., & Paruelo, J. M. (2008). Land-use and land cover dynamics in South American Temperate Grasslands.Google Scholar
  7. Barbour, M. T., Gerritsen, J., Snyder, B. D., & Stribling, J. B. (1999). Rapid Bioassessment Protocols for use in Streams and Wadeable Rivers, Periphyton, Benthic Macroinvertebrates, and Fish (2nd ed.). Washington, D.C.: EPA 841-B-99-002. U.S. Environmental. Protection Agency; Office of Water.Google Scholar
  8. Bartesaghi, L., & Achkar, M. (2008). Land use interpretation of Uruguay from satellite images CBERS 2. Montevideo: Technical Report. PDT Project 32–26.Google Scholar
  9. Bartesaghi, L., Ceroni, M., Díaz, I., Faccio, C., Lenormand, P. (2006). Estrategias para la Gestión Participativa en Cuencas Hidrográficas: Experiencia Piloto en la Cuenca del Río Santa Lucía Chico en el Departamento de Florida-Uruguay. Montevideo: Programa Uruguay Sustentable. REDES – AMIGOS DE LA TIERRA URUGUAY. Laboratorio de Desarrollo Sustentable y Gestión Ambiental del Territorio. Facultad de Ciencias.Google Scholar
  10. Beckert, K. A., Fisher, T. R., O’Neil, J. M., & Jesien, R. V. (2011). Characterization and comparison of stream nutrients, land use, and loading patterns in Maryland coastal bay watersheds. Water, Air, and Soil Pollution, 221, 255–273.CrossRefGoogle Scholar
  11. Bossi, J., Ferrando, L., Montaña, J., Campal, N., Morales, H., Gancio, F., Schipilov, A., Piñeyro, D., & Sprechmann, P. (1998). Carta Geológica del Uruguay., escala 1/500.000 versión 1.0. Montevideo: Facultad de Agronomía - Geoeditores SRL.Google Scholar
  12. Buffagni, A., Casalegno, C., & Erba, S. (2009). Hydromorphology and land use at different spatial scales: expectations in a changing climate scenario for medium-sized rivers of the Western Italian Alps. Fundamental and Applied Limnology / Archiv für Hydrobiologie, 174, 7–25.CrossRefGoogle Scholar
  13. Chalar, G., Arocena, R., Fabián, D., & Pacheco, J. P. (2011). Trophic assessment of streams in Uruguay: A trophic state index for benthic invertebrates (TSI). Ecological Indicators, 11, 362–369.CrossRefGoogle Scholar
  14. Chalar, G., Delbene, L., González-Bergonzoni, I., & Arocena, R. (2013). Fish assemblage changes along a trophic gradient induced by agricultural activities (Santa Lucía, Uruguay). Ecological Indicators, 24, 582–588.CrossRefGoogle Scholar
  15. Chalar, G., Garcia-Pesenti, P., Silva-Pablo, M., Perdomo, C., Olivero, V., & Arocena, R. (2017). Weighting the impacts to stream water quality in small basins devoted to forage crops, dairy and beef cow production. Limnologica, 65, 76–84.CrossRefGoogle Scholar
  16. Chapman, D. (1996). Water quality assessments. UNESCO-WHO-UNEP: London 626 p.CrossRefGoogle Scholar
  17. Cochero, J., Cortelezzi, A., Tarda, A. S., & Gómez, N. (2016). An index to evaluate the fluvial habitat degradation in lowland urban streams. Ecological Indicators, 71, 134–144.CrossRefGoogle Scholar
  18. Conde, D., Gorga J., Chalar G. (1999). Cap. 11. Nitrógeno, fósforo y sílice. In. Arocena R, Conde D. (Eds.) Métodos en Ecología de Aguas Continentales (pp. 82–96). Montevideo: Facultad de Ciencias, Universidad de la RepúblicaGoogle Scholar
  19. Connolly, N. M., Pearson, R. G., Loong, D., Maughanb, M., & Brodie, J. (2015). Water quality variation along streams with similar agricultural development but contrasting riparian vegetation. Agriculture, Ecosystems and Environment, 213, 11–20.CrossRefGoogle Scholar
  20. Conroy, E., Turner, J. N., Rymszewicz, A., O’Sullivan, J. J., Bruen, M., Lawler, D., Lally, H., & Kelly-Quinn, M. (2016). The impact of cattle access on ecological water quality in streams: examples from agricultural catchments within Ireland. Science of the Total Environment, 547, 17–29.CrossRefGoogle Scholar
  21. Dauwalter, D. C., Splinter, D. K., Fisher, W. L., & Marston, R. A. (2007). Geomorphology and stream habitat relationships with smallmouth bass (Micropterus dolomieu) abundance at multiple spatial scales in eastern Oklahoma. Canadian Journal of Fisheries and Aquatic Sciences, 64, 1116–1129.CrossRefGoogle Scholar
  22. Elosegi, A., Diez, J., & Mutz, M. (2010). Effects of hydromorphological integrity on biodiversity and functioning of river ecosystems. Hydrobiologia, 657, 199–215.Google Scholar
  23. Evans, D. M., Schoenholtz, S. H., Wigington, P. J., Griffith, S. M., & Floyd, W. C. (2014). Spatial and temporal patterns of dissolved nitrogen and phosphorus in surface waters of a multi-land use basin. Environmental Monitoring and Assessment, 186, 873–887.CrossRefGoogle Scholar
  24. Feijoó, C. S., & Lombardo, R. J. (2007). Baseline water quality and macrophyte assemblages in Pampean streams: a regional approach. Water Research, 41, 1399–1410.CrossRefGoogle Scholar
  25. Fernandes, J., & Tanaka, M. O. (2014). Can the structure of a riparian forest remnant influence stream water quality? A tropical case study. Hydrobiologia, 724, 175–185.CrossRefGoogle Scholar
  26. Ferreol, M., Dohet, A., Cauchie, H. M., & Hoffmann, L. (2005). A top-down approach for the development of a stream typology based on abiotic variables. Hydrobiologia, 551, 193–208.CrossRefGoogle Scholar
  27. Gabellone, N. A., Claps, M. C., Solari, L. C. & Neschuk, N. C. (2005). Nutrients, Conductivity and Plankton in a Landscape Approach to a Pampean Saline Lowland River (Salado River, Argentina). Biogeochemistry, 75, 455–477.Google Scholar
  28. Giorgi, A. D. N., Feijoó, C., & Tell, G. (2005). Primary producers in a Pampean stream: temporal variation and structuring role. Biodiversity and Conservation, 14, 1699–1718.CrossRefGoogle Scholar
  29. Graf, W., Leitner, P., Hanetseder, I., Ittner, L. D., Dossi, F., & Hauer, C. (2016). Ecological degradation of a meandering river by local channelization effects: a case study in an Austrian lowland river. Hydrobiologia, 772, 145–160.CrossRefGoogle Scholar
  30. Gücker, B., Boëchat, I., & Giani, A. (2009). Impacts of agricultural land use on ecosystem structure and whole-stream metabolism of tropical Cerrado streams. Freshwater Biology, 54, 2069–2085.CrossRefGoogle Scholar
  31. Hart, M. R., Quin, B. F., & Nguyen, M. L. (2004). Phosphorus runoff from agricultural land and direct fertilizer effects: a review. Journal of Environmental Quality, 33, 1954–1972.CrossRefGoogle Scholar
  32. Herringshaw, C. J., Stewart, T. W., & Thom, J. R. (2011). Land use, stream habitat and benthic invertebrate. Assemblages in a highly altered Iowa watershed. The American Midland Naturalist, 165, 274–293.CrossRefGoogle Scholar
  33. Horton, R. E. (1945). Erosional development of streams and their drainage basins: hydrophysical approach to quantitative morphology. Bulletin Geological Society of America, 56, 275–370.CrossRefGoogle Scholar
  34. Jackson, C. R., Bahn, R. A., & Webster, J. R. (2017). Water quality signals from rural land use and exurbanization in a mountain landscape: what’s clear and what’s confounded? Journal of the American Water Resources Association, 53, 1212–1228.CrossRefGoogle Scholar
  35. Kail, J., Jähnig, S. C., & Hering, D. (2009). Relation between floodplain land use and river hydromorphology on different spatial scales—a case study from two lower-mountain catchments in Germany. Fundamental and Applied Limnology / Archiv für Hydrobiologie, 174, 63–73.CrossRefGoogle Scholar
  36. Kamp, U., Bock, R., & Holzl, K. (2004). Assessment of river habitat in Brandenburg, Germany. Limnologica, 34, 176–186.CrossRefGoogle Scholar
  37. Kasangaki, A., Chapman, L. J., & Balirwa, J. (2008). Land use and the ecology of benthic macroinvertebrate assemblages of high-altitude rainforest streams in Uganda. Freshwater Biology, 53, 681–697.CrossRefGoogle Scholar
  38. Kearns, F. R., Kelly, N. M., Carter, J. L., & Resh, V. H. (2005). A method for the use of landscape metrics in freshwater research and management. Landscape Ecology, 20, 113–125.CrossRefGoogle Scholar
  39. Lassaletta, L., García-Gómez, H., Gimeno, B. S., & Rovira, J. (2009). Agriculture-induced increase in nitrate concentrations in stream waters of a large Mediterranean catchment over 25 years (1981–2005). Science of the Total Environment., 407, 6034–6043.CrossRefGoogle Scholar
  40. Manfrin, A., Bombi, P., Traversetti, L., Larsene, S., & Scalici, M. (2016). A landscape-based predictive approach for running water quality assessment: a Mediterranean case study. Journal for Nature Conservation, 30, 27–31.CrossRefGoogle Scholar
  41. Meynendonckx, J., Heuvelmans, G., Muys, B., & Feyen, J. (2006). Effects of watershed and riparian zone characteristics on nutrient concentrations in the River Scheldt Basin. Hydrology and Earth System Sciences Discussions, 3, 653–679.CrossRefGoogle Scholar
  42. MGAP - Ministerio de Ganadería, Agricultura y Pesca. Dirección de Estadísticas Agropecuarias (MGAP, DIEA) (2000). Censo General Agropecuario. www.mgap.gub.uy.
  43. MGAP - Ministerio de Ganadería, Agricultura y Pesca. Dirección General de Recursos Naturales Renovables (MGAP, DGRNR) (1994). Carta de Reconocimiento de los Suelos del Uruguay 1:1.000.000.Google Scholar
  44. MGAP - Ministerio de Ganadería, Agricultura y Pesca. Dirección General de Recursos Naturales Renovables (MGAP, DGRNR) (2004). Carta de Macrozonificación de Ecosistemas del UruguayGoogle Scholar
  45. Molina, M. C., Roa-Fuentes, C. A., Zeni, J. O., & Casatti, L. (2017). The effects of land use at different spatial scales on instream features in agricultural streams. Limnologica, 65, 14–21.CrossRefGoogle Scholar
  46. Mugni, H. (2009). Concentración de nutrientes y toxicidad de pesticidas en aguas superficiales de cuencas rurales. Tesis doctoral: Universidad de La Plata 140 pp.Google Scholar
  47. Mugni, H., Paracampo, A., & Bonetto, C. (2013). Nutrient concentrations in a Pampasic first order stream with different land uses in the surrounding plots (Buenos Aires, Argentina). Bulletin of Environmental Contamination and Toxicology, 91(4), 391–395.CrossRefGoogle Scholar
  48. Ouyang, Y. (2005). Evaluation of river water quality monitoring stations by principal component analysis. Water Research, 39, 2621–2635.CrossRefGoogle Scholar
  49. Pedersen, M. L. (2009). Effects of channelisation, riparian structure and catchment area on physical habitats in small lowland streams. Fundamental and Applied Limnology / Archiv für Hydrobiologie, 174, 89–99.CrossRefGoogle Scholar
  50. Petersen, R. C. (1992). The RCE: A riparian, channel, and environmental inventory for small streams in the agricultural landscape. Freshwater Biology, 27, 295–306.CrossRefGoogle Scholar
  51. Peterson, E. W., & Benning, C. (2013). Factors influencing nitrate within a low-gradient agricultural stream. Environment and Earth Science, 68, 1233–1245.CrossRefGoogle Scholar
  52. Poquet, J. M., Alba-Tercedor, J., Punt, T., Sánchez-Montoya, M., Robles, S., Alvarez, M., Zamora-Muñoz, C., Sainz-Cantero, C. E., Vidal-Abarca, M. R., Suarez, M. L., Toro, M., Pujante, A. M., Rieradevall, M., & Prat, N. (2009). The MEDiterranean Prediction And Classification System (MEDPACS): an implementation of the RIVPACS/ AUSRIVAS predictive approach for assessing Mediterranean aquatic macroinvertebrate communities. Hydrobiologia, 623, 153–171.CrossRefGoogle Scholar
  53. Ranganath, S. C., Hession, W. C., & Wynn, T. M. (2009). Livestock exclusion influences on riparian vegetation, channel morphology, and benthic macroinvertebrate assemblages. Journal of Soil and Water Conservation, 64, 33–42.CrossRefGoogle Scholar
  54. Rinaldi, M., Suria, N., Comiti, F., & Bussettini, M. (2013). A method for the assessment and analysis of the hydromorphological condition of Italian streams: The Morphological Quality Index (MQI). Geomorphology, 180–181, 96–108.CrossRefGoogle Scholar
  55. Rodrigues Capítulo, A., Gómez, N., Giorgi, A., & Feijoó, C. (2010). Global changes in pampean lowland streams (Argentina): implications for biodiversity and functioning. Hydrobiologia, 657, 53–70.CrossRefGoogle Scholar
  56. Rosso, J. J., & Fernandez Cirelli, A. (2013). Effects of land use on environmental conditions and macrophytes in prairie lotic ecosystems. Limnologica, 43, 18–26.CrossRefGoogle Scholar
  57. Roth, N. E., Allan, J. D., & Erickson, D. L. (1996). Landscape influences on stream biotic integrity assessed at multiple spatial scales. Landscape Ecology, 11, 141–156.CrossRefGoogle Scholar
  58. Sánchez-Montoya, M. M., Puntí, T., Suárez, M. L., Vidal-Abarca, M. R., Rieradevall, M., Poquet, J. M., Zamora-Muñoz, C., Robles, S., Álvarez, M., Alba-Tercedor, J., Toro, M., Pujante, A. M., Munné, A., & Prat, N. (2007). Concordance between ecotypes and macroinvertebrate assemblages in Mediterranean streams. Freshwater Biology, 52, 2240–2255.CrossRefGoogle Scholar
  59. Sandin, L. (2009a). The relationship between land-use, hydromorphology and river biota at different spatial and temporal scales: a synthesis of seven case studies. Fundamental and Applied Limnology Archiv für Hydrobiologie, 174, 1–5.CrossRefGoogle Scholar
  60. Sandin, L. (2009b). The effects of catchment land-use, near-stream vegetation, and river hydromorphology on benthic macroinvertebrate communities in a south-Swedish catchment. Fundamental and Applied Limnology / Archiv für Hydrobiologie, 174, 75–87.CrossRefGoogle Scholar
  61. Smith, A. P., Westerna, A. W., & Hannah, M. C. (2013). Linking water quality trends with land use intensification in dairy farming catchments. Journal of Hydrology, 476, 1–12.CrossRefGoogle Scholar
  62. Solis, M., Mugni, H., Hunt, L., Marrochi, N., Fanelli, S., & Bonetto, C. (2016). Land use effect on invertebrate assemblages in Pampasic streams (Buenos Aires, Argentina). Environmental Monitoring and Assessment, 188, 539.CrossRefGoogle Scholar
  63. Strahler, A. N. (1952). Hypsometric analysis of erosional topography. Bull. Geological Society of America, 63, 923–938.CrossRefGoogle Scholar
  64. Strayer, D. L., Beighley, R. E., Thompson, L. C., Brooks, S., Nilsson, C., Pinay, G., & Naiman, R. J. (2003). Effects of land cover on stream ecosystems: roles of empirical models and scaling issues. Ecosystems, 6, 407–423.CrossRefGoogle Scholar
  65. Tran, C. P., Bode, R. W., Smith, A. J., & Kleppel, G. S. (2010). Land-use proximity as a basis for assessing stream water quality in New York State (USA). Ecological Indicators, 10, 727–733.Google Scholar
  66. Vaughan, I. P., & Ormerod, J. (2005). Increasing the value of principal components analysis for simplifying ecological data: a case study with rivers and river birds. Journal of Applied Ecology, 42, 487–497.CrossRefGoogle Scholar
  67. Vrebos, D., Beauchard, O., & Meire, P. (2017). The impact of land use and spatial mediated processes on the water quality in a river system. Science of the Total Environment, 601–602, 365–373.CrossRefGoogle Scholar
  68. Yates, J. A., Bailey, R. C., & Schwindt, J. A. (2007). Effectiveness of best management practices in improving stream ecosystem quality. Hydrobiologia, 583, 331–344.CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Universidad de la RepúblicaMontevideoUruguay
  2. 2.Facultad de CienciasSección LimnologíaMontevideoUruguay
  3. 3.Laboratorio Ecología y Rehabilitación de Sistemas AcuáticosCentro Universitario Regional EsteMaldonadoUruguay

Personalised recommendations