Cyto-genotoxic consequences of carbendazim treatment monitored by cytogenetical analysis using Allium root tip bioassay

  • Sonam Verma
  • Alka Srivastava


Environmental pollution is one of the major problems of these days. One of the reasons of environmental pollution is the indiscriminate use of agrochemicals in agriculture. Fungicides are being extensively used in agriculture for enhancing crop yield and growth by controlling fungal growth. Fungicide carbendazim is widely applied to soil and seeds of vegetable/cereal crops in India and is effective against a very broad spectrum of fungi. The present study was designed to monitor the cyto-genotoxic effects of carbendazim directly in treated soils by cytogenetical analysis using Allium cepa root tip bioassay. In a pot experiment, fungicide carbendazim was added to soil at the rates of 2.5, 5, 7.5, and 10 mg kg−1 soil and uniform size onion bulb was planted in each pot, and three replicates were maintained for each dose at 1, 7, 15, 30, and 45 days after application and roots from onion bulbs were fixed for cytogenetical analysis. Findings indicate that carbendazim treatment leads to a significant dose and duration-dependent decrease in percent mitotic index with related increase in mitotic inhibition. Statistical analysis showed a significant effect of carbendazim doses and duration of treatment on the percentage relative abnormality rate of A. cepa. Phase indices of our study showed high numbers of cells in prophase as compared to other phases at some doses of treatment. The different types of chromosomal abnormalities observed in our study serve as indicators of genotoxicity of carbendazim and we report for the first time the effect of its application directly in soil using a plant test system.


Carbendazim C-metaphase Cyto-genotoxic Cytogenetical Fungicide 


Funding information

The authors thank the University Grant Commission (UGC), India, for financial assistance.


  1. Akyil, D., Ozkara, A., Erdogmus, S. F., Eren, Y., Konuk, M., & Saglam, E. (2015). Evaluation of cytotoxic and genotoxic effects of Benodanil by using Allium and Micronucleus assays. Drug Chemical Toxicology, 3, 1–6.Google Scholar
  2. Antonopoulos, D. F., & Elena, K. (2008). Susceptibility of Greek alfalfa and clover cultivars to Fusarium oxysporum f. sp. medicaginis and potential methods of disease control. Journal of Plant Diseases and Protection, 115, 162–166.CrossRefGoogle Scholar
  3. Ateeq, B., Farah, M. A., Niamat, A. M., & Waseem, A. (2002). Clastogenicity of pentachlorophenol, 2,4-D and butachlor evaluated by Allium root tip test. Mutation Research, 514, 105–113.CrossRefGoogle Scholar
  4. Aydemir, N., Çelikler, S., Summak, Ş., Yılmaz, D., & Özer, Ö. (2008). Evaluation of clastogenicity of 4, 6-Dinitro-o-cresol (DNOC) in Allium root tip test. Journal of Biological and Environmental Sciences, 2(5), 59–63.Google Scholar
  5. Banerjee, A. (1992). A time course study relative cytotoxic effect of extracts of different types of tobacco on Allium cepa mitosis. Cytologia, 57, 315–320.CrossRefGoogle Scholar
  6. Batista, N. J. C., Cavalcante, A. A. C. M., Oliveira, M. G., Medeiros, E. C. N., Machado, J. L., Evangelista, S. R., Dias, J. F., Santos, C. E. I., Duarte, A., Silva, F. R., & Silva, J. (2016). Genotoxic and mutagenic evaluation of water samples from a river under the influence of different anthropogenic activities. Chemosphere, 164, 134–141.CrossRefGoogle Scholar
  7. Bianchi, J., Casimiro Fernandes, T. C., & Marin-Morales, M. A. (2016). Induction of mitotic and chromosomal abnormalities on Allium cepa cells by pesticides imidacloprid and sulfentrazone and the mixture of them. Chemosphere, 144, 475–483.CrossRefGoogle Scholar
  8. Bolognesi, C., & Merlo, F. D. (2011). Pesticides: human health effects. Encyclopedia of Environmental Health., 438–453.Google Scholar
  9. Botías, C., David, A., Hill, E. M., & Goulson, D. (2016). Contamination of wild plants near neonicotinoid seed-treated crops, and implications for non-target insects. Science of the Total Environment, 566-567, 269–278.CrossRefGoogle Scholar
  10. Bremner, J. M. (1965). Total nitrogen. In C. A. Black (Ed.), Methods in soil analysis: chemical and microbiological properties part II American Society of Agronomy.Google Scholar
  11. Burrows, L. A., & Edwards, C. A. (2004). The use of integrated soil microcosms to assess the impact of carbendazim on soil ecosystems. Ecotoxicology, 13, 143–161.CrossRefGoogle Scholar
  12. Davidse, L. C. (1986). Benzimidazole fungicides: mechanisms of action and biological impact. Annual Review of Phytopathology, 24, 43–65.CrossRefGoogle Scholar
  13. de la Huebra, M. J. G., Hernandez, P., Nieto, O., Ballesteros, Y., & Hernandez, L. (2000). Determination of carbendazim in soil samples by anodic stripping voltammetry using a carbon fiber ultramicroelectrode. Fresenius Journal of Analytical Chemistry, 367, 474–478.CrossRefGoogle Scholar
  14. de Souza, R. B., de Souza, C. P., Bueno, O. C., & Fontanetti, C. S. (2017). Genotoxicity evaluation of two metallic-insecticides using Allium cepa and Tradescantia pallida: a new alternative against leaf-cutting ants. Chemosphere, 168, 1093–1099.CrossRefGoogle Scholar
  15. Delp, C. J. (1987). In H. Lyr (Ed.), Benzimidazole and related fungicides, in modem selective fungicides: properties, applications, mechanisms of action (pp. 233–244). New York: Wiley.Google Scholar
  16. Dikic, D., Mojsovic-Cuic, A., Cupor, I., Benkovic, V., Horvat-Knezevic, A., Lisicic, D., & Orsolic, N. (2012). Carbendazim combined with imazalil or cypermethrin potentiate DNA damage in hepatocytes of mice. Human and Experimental Toxicology, 31, 492–505.CrossRefGoogle Scholar
  17. Doroftei, E., & Antofie, M. M. (2013). The cyto- and genotoxic effects induced by sulphates in Allium cepa L. Analele Universitatii din Oradea, Fascicula Biologie, 1, 64–70.Google Scholar
  18. El-Ghamery, A. A., El-Nahas, A. I., & Mansour, M. M. (2000). The action of atrazine herbicide as an inhibitor of cell division on chromosomes and nucleic acids content in root meristems of Allium cepa and Vicia faba. Cytologia, 65, 277–287.CrossRefGoogle Scholar
  19. Fang, H., Wang, Y., Gao, C., Yan, H., Dong, B., & Yu, Y. (2010). Isolation and characterization of Pseudomonas sp. CBW capable of degrading carbendazim. Biodegradation, 21, 939–946.CrossRefGoogle Scholar
  20. Fatma, F., Verma, S., Kamal, A., & Srivastava, A. (2018). Monitoring of morphotoxic, cytotoxic and genotoxic potential of mancozeb using Allium assay. Chemosphere, 195, 864–870.CrossRefGoogle Scholar
  21. Firbas, P., & Amon, T. (2014). Chromosome damage studies in the onion plant Allium cepa L. Caryologia, 67, 25–35.CrossRefGoogle Scholar
  22. Haliem, A. S. (1990). Cytological effects of the herbicide sencor on mitosis of Allium cepa. Egyptian Journal of Botany, 33, 93–104.Google Scholar
  23. Harnpicharnchai, K., Chaiear, N., & Charerntanyarak, L. (2013). Residues of organophosphate pesticides used in vegetable cultivation in ambient air, surface water and soil in Bueng Niam Subdistrict, Khon Kaen, Thailand. Southeast Asian Journal of Tropical Medicine and Public Health, 44(6), 1088–1097.Google Scholar
  24. Hicks, B. (1998). Generic pesticides—the products and markets. Agrow reports, PJB publications. Google Scholar
  25. Huan, Z., Luo, J., Xu, Z., & Xie, D. (2016). Acute toxicity and genotoxicity of carbendazim, main impurities and metabolite to earthworms (Eisenia foetida). Bulletin of Environmental Contamination and Toxicology, 96, 62–69.CrossRefGoogle Scholar
  26. Ishidate Jr., M., Harnois, M. C., & Sofuni, T. (1988). A comparative analysis of data on the clastogenicity of 951 chemical substances tested in mammalian cell cultures. Mutation Research, 195, 151–213.CrossRefGoogle Scholar
  27. Jabee, F., Ansari, M. Y. K., & Shahab, D. (2008). Studies on the effect of maleic hydrazide on root tip cells and pollen fertility in Trigonella foenum-graecum L. Turkish Journal of Botany, 32, 337–344.Google Scholar
  28. Jackson, M. L. (1967). Soil chemical analysis. New Delhi: Prentice Hall of India Pvt. Ltd..Google Scholar
  29. JanakiDevi, V., Nagarani, N., YokeshBabu, M., Kumaraguru, A. K., & Ramakritinan, C. M. (2013). A study of proteotoxicity and genotoxicity induced by the pesticide and fungicide on marine invertebrate (Donax faba). Chemosphere, 90(3), 1158–1166.CrossRefGoogle Scholar
  30. Jin, R. Y., Gui, W. J., Shou, L. F., Wu, H. M., & Zhu, G. N. (2005). Residue and degradation dynamics of carbendazim in orange and soil. Jiangsu Journal of Agricultural Sciences, 2, 111–114.Google Scholar
  31. Kaymak, F. (2005). Cytogenetic effects of maleic hydrazide on Helianthus annuus L. Pakistan Journal of Biological Science, 8(1), 104–108.CrossRefGoogle Scholar
  32. Kuchy, A. H., Wani, A. A., & Kamili, A. N. (2016). Cytogenetic effects of three commercially formulated pesticides on somatic and germ cells of Allium cepa. Environmental Science and Pollution Research, 23, 6895–6906.CrossRefGoogle Scholar
  33. Leme, D. M., & Marin-Morales, M. A. (2009). Allium cepa test in environmental monitoring: a review on its application. Mutation Research, 682, 71–81.CrossRefGoogle Scholar
  34. Li, H. L., & Meng, Z. Q. (2003). Genotoxicity of hydrated sulfur dioxide on root tips of Allium sativum and Vicia faba. Mutation Research, 537, 109–114.CrossRefGoogle Scholar
  35. Liman, R., Cigerci, I. H., & Öztürk, N. S. (2015). Determination of genotoxic effects of Imazethapyr herbicide in Allium cepa roots cells by mitotic activity, chromosome aberration, and comet assay. Pesticide Biochemistry and Physiology, 118, 38–42.CrossRefGoogle Scholar
  36. Liu, D., Jiang, W., & Li, M. (1992). Effects of trivalent and hexavalent chromium on root growth and cell division of Allium cepa. Hereditas, 117, 23–29.CrossRefGoogle Scholar
  37. Lutterbeck, C. A., Kern, D. I., Machado, E. L., & Kümmerer, K. (2015). Evaluation of the toxic effects of four anti-cancer drugs in plant bioassays and its potency for screening in the context of waste water reuse for irrigation. Chemosphere, 135, 403–410.CrossRefGoogle Scholar
  38. Mahfouz, H. M., Barakat, H. M., Fatah Maher, A. B. D., et al. (2013). Comparison of cytotoxic and genotoxic effects of the synthetic fungicide nimrod and the natural fungicide rhizo–N. African Journal of Pharmacy and Pharmacology, 7(27), 1924–1933.CrossRefGoogle Scholar
  39. Martins, N. C. M., Souza, V. V., & Souza, T. S. (2016). Cytotoxic, genotoxic and mutagenic effects of sewage sludge on Allium cepa. Chemosphere, 148, 481–486.CrossRefGoogle Scholar
  40. Morinaga, H., Yanase, T., Nomura, M., Okabe, T., Goto, K., Harada, N., & Nawata, H. (2004). A benzimidazole fungicide, benomyl, and its metabolite, carbendazim, induce aromatase activity in a human ovarian granulose-like tumor cell line (KGN). Endocrinology, 145, 1860–1869.CrossRefGoogle Scholar
  41. Mrema, E. J., Rubino, F. M., Brambilla, G., Moretto, A., Tsatsakis, A. M., & Colosio, C. (2013). Persistent organochlorinated pesticides and mechanisms of their toxicity. Toxicology, 307, 74–88.CrossRefGoogle Scholar
  42. Nakamura, S., Oda, Y., Shimade, T., Oki, I., & Sugimoto, K. (1987). SOS-inducing activity of chemical carcinogens and mutagens in Salmonella typhimurium TA1535/pSK1002: examination with 151 chemicals. Mutation Research, 192, 239–246.Google Scholar
  43. Naksen, W., Prapamontol, T., Mangklabruks, A., Chantara, S., Thavornyutikarn, P., Robson, M. G., Ryan, P. B., Barr, D. B., & Panuwet, P. (2016). A single method for detecting 11 organophosphate pesticides in human plasma and breastmilk using GC-FPD. Journal of Chromatography B, 1025, 92–104.CrossRefGoogle Scholar
  44. Palanikumar, L., Kumaraguru, A. K., Ramakritinan, C. M., & Anand, M. (2014). Toxicity, biochemical and clastogenic response of chlorpyrifos and carbendazim in milkfish Chanos chanos. International Journal of Environmental Science and Technology, 11, 765–774.CrossRefGoogle Scholar
  45. Pandey, R. M., & Santosh, U. (2007). Impact of food additives on mitotic chromosomes of Vicia faba L. Caryologia, 60, 309–314.CrossRefGoogle Scholar
  46. Paul, A., Nag, S., & Sinha, K. (2013). Cytological effects of blitox on root mitosis of Allium cepa L. International Journal of Scientific and Research Publications, 3(5), 1–7.Google Scholar
  47. Peech, M., Alexander, L. T., Dean, L. A., & Reed, J. F. (1947). Methods of soil analysis for soil-fertility investigations. Washington DC: USDA Circ.Google Scholar
  48. Quian, Y. (1996). Transformation and expression of the resistance gene to carbendazim into Trichoderma harzianum. Resistant Pest Management, 6, 8–12.Google Scholar
  49. Rajeswary, S., Kumaran, B., Ilangovan, R., Yuvaraj, S., Sridhar, M., Venkataraman, P., Srinivasan, N., & Aruldhas, M. M. (2007). Modulation of antioxidant defense system by the environmental fungicide carbendazim in Leydig cells of rats. Reproduction Toxicology, 24, 371–380.CrossRefGoogle Scholar
  50. Reisinger, K., Szigeti, J., & Varnagy, L. (2006). Determination of carbendazim residues in the eggs, liver and pectoral muscle of Japanese quail (Coturnix coturnix japonica). Acta Veterinaria Hungarica, 54, 127–133.CrossRefGoogle Scholar
  51. Richmond, D. V., & Phillips, A. (1975). The effects of benomyl and carbendazim on mitosis in hyphae of Botrytis cinerea Pers. ex Fr. and roots of Allium cepa L. Pesticide Biochemistry and Physiology, 5, 367–379.CrossRefGoogle Scholar
  52. Rodríguez, Y. A., Christofoletti, C. A., Pedro, J., Bueno, O. C., Malaspina, O., Ferreira, R. A. C., & Fontanetti, C. S. (2015). Allium cepa and Tradescantia pallida bioassays to evaluate effects of the insecticide imidacloprid. Chemosphere, 120, 438–442.CrossRefGoogle Scholar
  53. Sbrana, I., & Loprieno, N. (1985). The cytogenetic effects of o-phenylenediamine in mammalian and in human cells. Mutation Research, 147, 318.CrossRefGoogle Scholar
  54. Sharma, A. K., & Sharma, A. (1980). Chromosome techniques: theory and practice (third ed.). London: Butterworths and Co. Ltd.Google Scholar
  55. Singh, P., Srivastava, A. K., & Singh, A. K. (2008). Cell cycle stage specific application of cypermethrin and carbendazim to assess the genotoxicity in somatic cells of Hordeum vulgare L. Bulletin of Environmental Contamination and Toxicology, 81, 258–261.CrossRefGoogle Scholar
  56. Singh, R. J. (2003). Plant cytogenetics. CRC Press, Boca Raton, 463.Google Scholar
  57. Singhal, L. K., Bagga, S., Kumar, R., & Chauhan, R. S. (2003). Down regulation of humoral immunity in chickens due to carbendazim. Toxicology In Vitro, 17, 687–692.CrossRefGoogle Scholar
  58. Smaka-kincl, V., Stegnar, P., Lovka, M., & Toman, M. J. (1996). The evaluation of waste, surface and ground water quality using the Allium test procedure. Mutation Research, 368, 171–179.CrossRefGoogle Scholar
  59. Sofuni, T., Matsuoka, A., Sawada, M., Ishidate Jr., M., Zeiger, E., & Shelby, M. D. (1990). A comparison of chromosome aberration induction by 25 compounds tested by two Chinese hamster cell (CHL and CHO) systems in culture. Mutation Research, 241, 175–213.CrossRefGoogle Scholar
  60. Songa, E. A., & Okonkwo, J. O. (2016). Recent approaches to improving selectivity and sensitivity of enzyme-based biosensors for organophosphorus pesticides: a review. Talanta, 155, 289–304.CrossRefGoogle Scholar
  61. Şutan, N. A., Popescu, A., Mihaescu, C., Soare, L. C., & Marinescu, M. V. (2014). Evaluation of cytotoxic and genotoxic potential of the fungicide ridomil in Allium cepa L. Analele Ştiinţifice ale Universităţii, Al. I. Cuza Iaşi s. II a. Biologie vegetală. 60(1), 5–12.Google Scholar
  62. Tomlin, C. (1994). The pesticide manual: a world compendium, in incorporating the agrochemicals handbook, Royal Society of Chemistry, England.Google Scholar
  63. Trivedi, A. K., & Ahmad, I. (2013). Genotoxicity of chrysotile asbestos on Allium cepa L. meristematic root tip cells. Current Science, 105, 781–786.Google Scholar
  64. Truta, E., Capraru, G., Zamfirache, M. M., Asaftei, M., Toma, C., Olteanu, Z., & Ivanescu, L. (2010). Estimation of genotoxic potential of carbendazim in fenugreek. Studia Universitatis “Vasile Goldiş”, Seria Ştiinţele Vieţii, 20(2), 39–44.Google Scholar
  65. Tsaboula, A., Papadakis, E. N., Vryzas, Z., Kotopoulou, A., Kintzikoglou, K., & Mourkidou, E. P. (2016). Environmental and human risk hierarchy of pesticides: a prioritization method, based on monitoring, hazard assessment and environmental fate. Environment International, 91, 78–93.CrossRefGoogle Scholar
  66. Ventura-Camargo, B. C., Angelis, D. F., & Marin-Morales, M. A. (2016). Assessment of the cytotoxic, genotoxic and mutagenic effects of the commercial black dye in Allium cepa cells before and after bacterial biodegradation treatment. Chemosphere, 161, 325–332.CrossRefGoogle Scholar
  67. Vera Lopez, P., Ruiz Rejon, C., Lozano, R., & Ruiz Rejon, M. (1990). Effects of thiram on the mitotic division rhythm in roots of Allium sativum L. Cytobios, 62, 135–139.Google Scholar
  68. Verma, S., & Srivastava, A. (2017). Cytomorphologic parameters in monitoring cytogenotoxic effects of fertilizer in Allium cepa L. Environmental Monitoring and Assessment, 189(4), 159.CrossRefGoogle Scholar
  69. Verma, S., Arora, K., & Srivastava, A. (2016). Monitoring of genotoxic risks of nitrogen fertilizers by Allium cepa L. mitosis bioassay. Caryologia, 69(4), 343–350.Google Scholar
  70. Walkley, A., & Black, I. A. (1934). An examination of the Degtjareff method for determining organic carbon in soils: effect of variations in digestion conditions and of inorganic soil constituents. Soil Science, 63, 251–263.CrossRefGoogle Scholar
  71. Yu, G. C., Liu, Y. Z., Xie, L., & Wang, X. F. (2009). Involvement of Sertoli cells in spermatogenic failure induced by carbendazim. Environmental Toxicology and Pharmacology, 27, 287–292.CrossRefGoogle Scholar
  72. Yunlong, Y., Xiaoqiang, C., Guohui, P., Xiang, Y., & Hua, F. (2009). Effects of repeated applications of fungicide carbendazim on its persistence and microbial community in soil. Journal of Environmental Science, 21, 179–185.CrossRefGoogle Scholar
  73. Zeiger, E., Anderson, B., Haworth, S., Lawlor, T., & Mortelmans, K. (1988). Salmonella mutagenicity tests: IV. Results from the testing of 300 chemicals. Environmental and Molecular Mutagenesis, 12, 1–158.CrossRefGoogle Scholar
  74. Zhang, L. Z., Qiao, X. W., & Ma, L. P. (2009). Influence of environmental factors on degradation of carbendazim by Bacillus pumilus strain NY97-1. Internation Journal of Environmental Pollution, 38, 309–317.CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.In Vitro Culture and Plant Genetics Unit, Department of Botany, Faculty of ScienceUniversity of LucknowLucknowIndia

Personalised recommendations