Advertisement

Optimization and application of a low cost, colorimetric screening method for mercury in marine sediment

  • Olga Cavoura
  • Christine M. Davidson
  • Nicholas Katsiris
  • Helen E. Keenan
Article
  • 96 Downloads

Abstract

A rapid, inexpensive, colorimetric screening method for mercury (Hg) has been optimized to provide a semi-quantitative measurement of Hg concentration in marine sediment within the range 0.038 to 1.5 mg kg−1 encompassing the interim sediment quality guideline (ISQG) value of 0.13 mg kg−1 (CCME 1999) and the probable effects level (PEL) of 0.7 mg kg−1 for Hg in marine sediment (CCME 1999). Neither salinity (up to 41 practical salinity units (psu)) nor sediment organic matter (ΟΜ) content (up to 10%) affected the performance of the method. Accurate results were obtained for spike recovery experiments and analysis of certified reference material (CRM) BCR 580 Estuarine Sediment. The method was applied to sediment samples from Elefsina Bay, Greece. Screening results indicated Hg contamination in the bay, with concentrations exceeding the PEL value. Findings were confirmed by quantitative analysis of the samples by cold vapor atomic absorption spectrometry (CV-AAS), where results in the range 1.4–2.96 mg kg−1 were determined.

Keywords

Mercury Screening Colorimetric Marine Sediment Elefsina 

Notes

Acknowledgements

Sampling was carried out in cooperation with the Organization for the Development of the Thriasino Plain, Greece.

References

  1. Bazzicalupi, C., Caltagirone, C., Cao, Z. F., Chen, Q. B., Di Natale, C., Garau, A., Lippolis, V., Lvova, L., Liu, H. L., Lundstrom, I., Mostallino, M. C., Nieddu, M., Paolesse, R., Prodi, L., Sgarzi, M., & Zaccheroni, N. (2013). Multimodal use of new coumarin-based fluorescent chemosensors: Towards highly selective optical sensors for Hg2+ probing. Chemistry -A European Journal, 19, 14639–14653.CrossRefGoogle Scholar
  2. Boszke, L., Kowalski, A., Glosinska, G., Szarek, R., & Siepak, J. (2003). Environmental factors affecting speciation of mercury in the bottom sediment; an overview. Polish Journal of Environmental Studies, 12, 5–13.Google Scholar
  3. BS. (2000). British standards ISO 12880:2000: Characterisation of sludges – Determination of dry residue and water content. London: British Standards Institution.Google Scholar
  4. CCME (1999). Canadian sediment quality guidelines for protection of aquatic life, Mercury. Available at http://ceqg-rcqe.ccme.ca/download/en/241. Accessed June 2016.
  5. Choi, Y. W., You, G. R., Lee, M. M., Kim, J., Jung, K. D., & Kim, C. (2014). Highly selective recognition of mercury ions through the “naked-eye”. Inorganic Chemistry Communications, 46, 43–46.CrossRefGoogle Scholar
  6. Deng, L., Ouyang, X. Y., Jin, J. Y., Ma, C., Jiang, Y., Zheng, J., Li, J. S., Li, Y. H., Tan, W. H., & Yang, R. H. (2013). Exploiting the higher specificity of silver amalgamation: selective detection of mercury(II) by forming Ag/hg amalgam. Analytical Chemistry, 85, 8594–8600.CrossRefGoogle Scholar
  7. Ding, Y., Wang, S., Li, J., & Chen, L. (2016). Nanomaterial-based optical sensors for mercury ions. TrAC Trends in Analytical Chemistry, 82(2016), 175–190.CrossRefGoogle Scholar
  8. Duan, J., & Zhan, J. (2015). Recent developments on nanomaterials-based optical sensors for Hg2+ detection. Science China Materials, 58, 223–240.CrossRefGoogle Scholar
  9. Duarte, K., Justino, C. I. L., Freitas, A. C., Gomes, A. M. P., Duarte, A. C., & Rocha-Santos, T. A. P. (2015). Disposable sensors for environmental monitoring of lead, cadmium and mercury. TrAC Trends in Analytical Chemistry, 64, 183–190.CrossRefGoogle Scholar
  10. EEA. (2005). UNEP/MAP, priority issues in the Mediterranean environment, report no. 5/2005. Luxembourg: Office for the Official Publications of the European Communities.Google Scholar
  11. EPA (2001), Methylmercury, Oral RfD assessment, Integrated Risk Information System. Available from http://www.epa.gov/iris/subst/0073.htm.
  12. Faust, S. D. & Osman, M. A. (1981). Chemistry of natural waters. Ann Arbor, Mich: Ann Arbor Science Publishers, Inc. Mercury, arsenic, lead, cadmium, selenium, and chromium in aquatic environments, p. 200–225.Google Scholar
  13. Ferreira, C. M. A., Egler, S. G., Yallouz, A. V., & Ignácio, A. R. A. (2017). Semiquantitative determination of total mercury in Pygocentrus nattereri Kner, 1858 and sediment at the plateau of Upper Paraguai River, Brazil. Chemosphere, 174, 604–612.CrossRefGoogle Scholar
  14. Gettler, A. O., & Kaye, S. (1950). A simple and rapid analytical method for Hg, Bi, Sb, and As in biologic materials. Journal of Laboratory and Clinical Medicine, 35, 146–151.Google Scholar
  15. Huange, Y. Q., Yin, J. C., Wang, Y. S., Xiao, X. L., Zhou, B., Xue, J. H., Tang, X., Wang, X. F., Zhu, Y. F., & Chen, S. H. (2016). Streptavidin and gold nanoparticles-based dual signal amplification for sensitive magnetoelastic sensing of mercury using a specific aptamer probe. Sensors and Actuators B: Chemical, 235, 507–514.CrossRefGoogle Scholar
  16. Huber, J., & Leopold, K. (2016). Nanomaterial-based strategies for enhanced mercury trace analysis in environmental and drinking waters. TrAC Trends in Analytical Chemistry, 80, 280–292.CrossRefGoogle Scholar
  17. Jayabal, S., Pandikumar, A., Lim, H. N., Ramaraj, R., Sund, T., & Huang, N. M. (2015). A gold nanorod-based localized surface plasmon resonance platform for the detection of environmentally toxic metal ions. Analyst, 140, 2540–2555.CrossRefGoogle Scholar
  18. Li, Q., Wang, J., & He, Y. (2016). Selective chemiluminescent sensor for detection of mercury(II) ions using non-aggregated luminol-capped gold nanoparticles. Sensors and Actuators B: Chemical, 231, 64–69.CrossRefGoogle Scholar
  19. PE (2006). AAnalyst 200 User’s Guide, PerkinElmer, Inc., 710 Bridgeport Avenue, Connecticut, USA. Available from http://www.che.ntu.edu.tw/ntuche/equip_booking/files/AAnalyst%20200%20.pdf.
  20. Schumacher, B. A. (2002). Methods for the determination of total organic carbon (TOC) in soils and sediments. Washington, DC: U.S. Environmental Protection Agency, EPA/600/R-02/069 (NTIS PB2003-100822).Google Scholar
  21. Sedghi, R., Kazemi, S., & Heidari, B. (2017). Novel selective and sensitive dual colorimetric sensor for mercury and lead ions derived from dithizone-polymeric nanocomposite hybrid. Sensors and Actuators B: Chemical, 245, 860–867.CrossRefGoogle Scholar
  22. Singh, V., Srivastava, P., PrakashVerma, S., Misra, A., Das, P., & Singh, N. (2014). A new fluorescent pyrene-pyridine dithiocarbamate probe: a chemodosimeter to detect Hg2+ in pure aqueous medium and in live cells. Journal of Luminescence, 154, 502–510.CrossRefGoogle Scholar
  23. Skyllberg, U., Bloom, P. R., Qian, J., Lin, C. M., & Bleam, W. F. (2006). Complexation of mercury(II) in soil organic matter: EXAFS evidence for linear two-coordination with reduced sulfur groups. Environmental Science & Technology, 40, 4174–4180.CrossRefGoogle Scholar
  24. WHO (2013). Mercury exposure and health impacts among individuals in the artisanal and small-scale gold mining (ASGM) community, World Health Organization, public health and environment, 20 Avenue Appia, 1211 Geneva 27, Switzerland. Available at http://www.who.int/ipcs/assessment/public_health/mercury_asgm.pdf. Accessed June 2014.
  25. Yallouz, A. V., de Campos, R. C., & Paciornik, S. (2000). A low-cost non instrumental method for semiquantitative determination of mercury in fish. Fresenius Journal of Analytical Chemistry, 366, 461–465.CrossRefGoogle Scholar
  26. Yallouz, A. V., Cesar, R. G., & Egler, S. G. (2008). Potential application of a semiquantitative method for mercury determination in soils, sediments and gold mining residues. Environmental Pollution, 151, 429–433.CrossRefGoogle Scholar
  27. Zhou, N., Chen, H., Li, J. H., & Chen, L. X. (2013). Highly sensitive and selective voltammetric detection of mercury(II) using an ITO electrode modified with 5-methyl-2-thiouracil, graphene oxide and gold nanoparticles. Microchimica Acta, 180, 493–499.CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of Sanitary Engineering and Environmental Health, National School of Public HealthAthensGreece
  2. 2.Department of Civil and Environmental EngineeringUniversity of StrathclydeGlasgowUK
  3. 3.WestCHEM, Department of Pure and Applied ChemistryUniversity of StrathclydeGlasgowUK

Personalised recommendations