Advertisement

Contamination by lead in sediments at Toledo River, hydrographic basin of PARANÁ III

  • Jéssica Manfrin
  • Daniel Schwantes
  • Affonso Celso Gonçalves Jr.
  • Michelli Caroline Ferronato
  • Valdemir Aleixo
  • Andréia da Paz Schiller
Article
  • 88 Downloads

Abstract

Due to intense agricultural and industrial activities, the environment has been affected by increasing amounts of pollutants, such as lead, a toxic heavy metal. When introduced to the environment, toxic metals are distributed and incorporated into the liquid medium, sediments, and aquatic biota; bioaccumulating. This research aimed to identify and quantify the levels of toxic metals present in the waters and sediments of Toledo River, compare the obtained results with legislation and other studies, as well as to evaluate the possible pollutant sources of the water body. Six water and sediment samples were taken at seven strategic sites. The concentrations of Cu, Zn, Fe, Mn, Cd, Pb, and Cr in water were compared to the maximum limits established by Brazilian legislation IN CONAMA No. 357/05, for class II fresh waters. The sediment samples were submitted to nitroperchloric digestion, and then the total concentrations of the metals were determined by flame atomic absorption spectrometry (FAAS). The toxicological quality of the Toledo River has been considerably affected by the activities carried out in its surroundings, such as extensive areas of agriculture, pig farming and industrial areas, causing concentrations of Cd, Fe, and mainly Pb, which is observed at concentrations higher than value allowed by the legislation.

Keywords

Water contamination Toxic metals Aquatic pollution Diffuse pollution Bioaccumulation 

Notes

Acknowledgments

The authors are thankful to National Counsel of Technological and Scientific Development (CNPq) for financial support of this research.

Referênces

  1. AOAC. (2012). Official methods of analysis (21.ed ed.). Maryland: AOAC 3000 p.Google Scholar
  2. APHA, AWWA, WPCF. (2012). Standard Methods for the Examination of Water and Wastewater (21st ed.). Washington, DC: American Public Health Association.Google Scholar
  3. BRAZIL. (2005). Ministério do Meio Ambiente. Conselho Nacional do Meio Ambiente (CONAMA). Resolução no. 357, de 17 de Março de 2005. Brasília, DF: Conama. http://www.mma.gov.br/port/conama/res/res05/res35705.pdf. Accessed 14 January 2018.
  4. Burton Jr., G. A. (2002). Sediment quality criteria in use around the world. Limnology, 3, 65–75.  https://doi.org/10.1007/s102010200008.CrossRefGoogle Scholar
  5. CETESB - Companhia Ambiental do Estado de São Paulo. (2009). Apêndice A – Significado ambiental e sanitário das variáveis de qualidade das águas e dos sedimentos e metodologias analíticas e de amostragem. In: Qualidade das águas interiores do estado de São Paulo 2009. São Paulo. http://cetesb.sp.gov.br/aguas-interiores/publicacoes-e-relatorios/. Accessed 14 January 2018.
  6. CETESB - Companhia Ambiental do Estado de São Paulo. (2015). Qualidade das águas superficiais no estado de São Paulo 2014. São Paulo: CETESB. http://aguasinteriores.cetesb.sp.gov.br/publicacoes-e-relatorios/. Accessed 14 January 2018.
  7. EMBRAPA - Empresa Brasileira de Pesquisa Agropecuária. (2013). Sistema Brasileiro de Classificação de Solos. 3.ed. Brasília. 353p.Google Scholar
  8. Espinoza-Quiñones, FR., Palácio, SM., Seolatto, AA., Lorenz, E.K., Zacarkim, C.E., Zenatti, D.C., Rizzutto, M.A., Manfredo, H.T., Added, N. (2005). Trace elements analysis of water from Toledo river using STXRF. International Nuclear Atlantic Conference – INAC 2005. doi:  https://doi.org/10.1016/j.apradiso.2010.06.001
  9. Espinoza-Quiñones, F. R., Modenes, A. N., Palacio, S. M., Szymanski, N., Welter, R. A., Rizzuto, M. A., Borba, C. E., & Kroumov, D. (2010). Evaluation of trace element levels in muscles, liver and gonad of fish species from São Francisco River of the Paraná Brazilian state by using SR-TXRF technique. Applied Radiation and Isotopes, 68, 2202–2207.  https://doi.org/10.1016/j.apradiso.2010.06.001.CrossRefGoogle Scholar
  10. Ferreira, D. F. (2003). SISVAR: Sistemas de análises estatísticas. Lavras: UFLA http://www.dex.ufla.br/~danielff/programas/sisvar.html.Google Scholar
  11. Ferreira, A. P., Horta, M. A. P., & Cunha, C. L. N. (2010). Assessment of heavy metal concentrations in sediment, water and organs of Nycticorax nycticorax (Black-crowned Night Heron) in Sepetiba Bay, Rio de Janeiro, Brazil. Rev Gestão Costeira Integrada, 10(2), 229–241.  https://doi.org/10.5894/rgci186.CrossRefGoogle Scholar
  12. Fortunato, J. M., Hypolito, R., Moura, C. L., & Nascimento, S. C. (2012). Caracterização da contaminação por metais pesados em área de manguezal, município de Santos (SP). Revista do Instituto Geológico, 33(1), 57–69.  https://doi.org/10.5935/0100-929X.20120004.CrossRefGoogle Scholar
  13. Gonçalves, D. A. (2012). Avaliação de Cu, Pb e Zn em solos adjacentes a rodovia SP-310. Revista Conexão Eletrônica, 9(1-2), 1–10 http://revistaconexao.aems.edu.br/edicoes-anteriores/2012/logica/.Google Scholar
  14. Gonçalves Jr, A. C., Nacke, H., Schwantes, D., & Coelho, G. F. (2014). Heavy Metal Contamination in Brazilian Agricultural Soils due to Application of Fertilizers. In M. C. Hernández-Soriano (Ed.), Environmental Risk Assessment of Soil Contamination (pp. 105–135). Rijeka: InTech.  https://doi.org/10.5772/57268.Google Scholar
  15. Guilland, R., & Cruz, R. M. (2017). Mental and Behavioral Disorders in workers at pig and poultry slaughterhouses in the south of Brazil. Rev. Col. de Psic, 26(1), 163–177.  https://doi.org/10.15446/rcp.v26n1.57479.CrossRefGoogle Scholar
  16. Hortellani, M. A., Sarkis, J. E. S., Abessa, D. M. S., & Souza, E. C. M. (2008). Assessment of metallic element contamination in sediments from the Santos – São Vicente Estuarine System. Quím. Nova, 31(1), 1–10.  https://doi.org/10.1590/S0100-40422008000100003.CrossRefGoogle Scholar
  17. Loureiro, D., Fernandez, M., Herms, F., Araújo, C., & Lacerda, L. D. (2012). Heavy metals distribution in sediments from Rodrigo de Freitas lagoon. Oecologia Australis, 16(3), 353–364.  https://doi.org/10.4257/oeco.2012.1603.04.CrossRefGoogle Scholar
  18. Masomboon, N., Chen, C., Anotai, J., & Lu, M. C. (2010). A statistical experimental design to determine o-toluidine degradation by the photo-Fenton process. Chemical Enginnering Journal, 159(1-3), 116–122.  https://doi.org/10.1016/j.cej.2010.02.063.CrossRefGoogle Scholar
  19. Nacke, H., Gonçalves Jr., A. C., Schwantes, D., Nava, I. A., Strey, L., & Coelho, G. F. (2013). Availability of heavy metals (Cd, Pb and Cr) in agriculture from commercial fertilizers. Archives of Environmental Contamination and Toxicology, 64, 537–544.  https://doi.org/10.1007/s00244-012-9867-z.CrossRefGoogle Scholar
  20. Pereira, G. C., & Ebecken, N. F. F. (2009). Knowledge discovering for coastal waters classification. Expert Systems with Applications, 36(4), 8604–8609.  https://doi.org/10.1016/j.eswa.2008.10.009.CrossRefGoogle Scholar
  21. PUIGDOMENECH, I. (2015). Medusa chemical equilibrium software. School of chemical science and engineering. https://www.kth.se/en/che/medusa/downloads-1.386254
  22. Rocha, M. P., Dourado, P. L. R., Rodrigues, M. S., Raposo, J. L., Grisolia, A. B., & De Oliveira, K. M. P. (2014). The influence of industrial and agricultural waste on water quality in the Água Boa Stream (Dourados, Mato Grosso do Sul, Brazil). Environmental Monitoring and Assessment, 187(7), 442.  https://doi.org/10.1007/s10661-015-4475-9.CrossRefGoogle Scholar
  23. Santiago, C. D., & Cunha-Santino, M. B. (2014). Avaliação preliminar da qualidade dos sedimentos de duas nascentes, Córrego Espraiado e Rio Monjolinho, São Carlos – SP. Revista de Ciências Ambientais, 8(1), 77–92 https://revistas.unilasalle.edu.br/index.php/Rbca/article/view/1476/1136.Google Scholar
  24. Silva, M. L. P., & Dantas, J. N. (2014). Preliminary Assessment of the Presence of Trace Metals in the Waters of the Stream Mussuré and Creek Mumbaba - João Pessoa. Revista Brasileira de Geografia Física, 7(4), 668–677 https://periodicos.ufpe.br/revistas/rbgfe/article/view/233284/27101.CrossRefGoogle Scholar
  25. Silva, D. F., Galvíncio, J. D., & Almeida, H. R. R. C. (2010). Variabilidade da qualidade de água na bacia hidrográfica do Rio São Francisco e atividades antróepicas relacionadas. Qualit@as Rev Eletrôn, 9(3), 1–17.  https://doi.org/10.18391/qualitas.v9i3.687.Google Scholar
  26. Silva, V. F., Paiva, A. L. A., Ferreira, A. C., Baracuhy, J. G. V., & Maracajá, P. B. (2013). Assessing the quality of water bodies in the paradise river paraibano cariri. Revista Verde, 8(3), 235–238.Google Scholar
  27. Souza, J. R., Moraes, M. E. B., Sonoda, S. L., & Santos, H. C. R. G. (2014). A importância da qualidade da água e os seus múltiplos usos: caso rio Almada, Sul da Bahia, Brasil. Revista Eletrônica do Prodema, 8(1), 26–45 http://www.revistarede.ufc.br/revista/index.php/rede/article/view/217/51.Google Scholar
  28. Strassburg, U., Oliveira, N. M., & Rocha Junior, W. F. (2016). O potencial de geração de biogás proveniente da criação de suínos no oeste do Paraná: Um estudo exploratório. Revista em Agronegócio e Meio Ambiente, 9(4), 803–818.  https://doi.org/10.17765/2176-9168.2016v9n4p803-818.CrossRefGoogle Scholar
  29. Trindade, W. M., Horn, A. H., & Ribeiro, E. V. (2012). Heavy metal concentrations in sediments of the São Francisco River between Tres Marias and Pirapora-MG: geochemistry and classification of environmental risk. Geonomos, 20(1), 64–74.  https://doi.org/10.18285/geonomos.v20i1.28.CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.State University of Western Paraná (UNIOESTE)Marechal Cândido RondonBrazil
  2. 2.Federal University of Paraná (UFPR)PalotinaBrazil
  3. 3.Pontifical Catholic University of Paraná (PUCPR)ToledoBrazil

Personalised recommendations