The potential of volunteered geographic information to investigate peri-urbanization in the conservation zone of Mexico City

  • Katharina Heider
  • Juan Miguel Rodriguez Lopez
  • Jürgen Scheffran


Due to the availability of Web 2.0 technologies, volunteered geographic information (VGI) is on the rise. This new type of data is available on many topics and on different scales. Thus, it has become interesting for research. This article deals with the collective potential of VGI and remote sensing to detect peri-urbanization in the conservation zone of Mexico City. On the one hand, remote sensing identifies horizontal urban expansion, and on the other hand, VGI of ecological complaints provides data about informal settlements. This enables the combination of top-down approaches (remote sensing) and bottom-up approaches (ecological complaints). Within the analysis, we identify areas of high urbanization as well as complaint densities and bring them together in a multi-scale analysis using Geographic Information Systems (GIS). Furthermore, we investigate the influence of settlement patterns and main roads on the peri-urbanization process in Mexico City using OpenStreetMap. Peri-urbanization is detected especially in the transition zone between the urban and rural (conservation) area and near main roads as well as settlements.


GIS Hot spots Informal settlements Remote sensing OpenStreetMap (OSM) Multi-scale analysis 



This work was supported with funding from the Centre for a Sustainable University (KNU) and from the Cluster of Excellence “Integrated Climate System Analysis and Prediction” (CliSAP—EXC177), through the German Science Foundation (DFG). Underlying RapidEye data has been contributed on behalf of the German Aerospace Center through funding by the German Federal Ministry of Economy and Energy. We thank John Elflein for proofreading.


  1. Aguilar, A. G. (2008). Peri-urbanization, illegal settlements and environmental impact in Mexico City. Cities, 25(3), 133–145.CrossRefGoogle Scholar
  2. Aguilar, A. G., & Guerrero, F. L. (2013). Poverty in peripheral informal settlements in Mexico City: the case of Magdalena Contreras, Federal District. Tijdschrift voor Economische en Sociale Geografie, 104(3), 359–378.CrossRefGoogle Scholar
  3. Aguilar, A. G., & Santos, C. (2011). Informal settlements’ needs and environmental conservation in Mexico City: an unsolved challenge for land-use policy. Land Use Policy, 28(4), 649–662.CrossRefGoogle Scholar
  4. Aguilar, A. G., & Ward, P. M. (2003). Globalization, regional development, and mega-city expansion in Latin America: analyzing Mexico City’s peri-urban hinterland. Cities, 20(1), 3–21.CrossRefGoogle Scholar
  5. Arsanjani, J. J., Helbich, M., Bakillah, M., Hagenauer, J., & Zipf, A. (2013). Toward mapping land-use patterns from volunteered geographic information. International Journal of Geographical Information Science, 27(12), 2264–2278.CrossRefGoogle Scholar
  6. Augustijn-Beckers, E., Flacke, J., & Retsios, B. (2011). Simulating informal settlement growth in Dar es Salaam, Tanzania: an agent-based housing model. Computers, Environment and Urban Systems, 35(2), 93–103.CrossRefGoogle Scholar
  7. Boulos, M. N. K., Resch, B., Crowley, D. N., Breslin, J. G., Sohn, G., Burtner, R., et al. (2011). Crowdsourcing, citizen sensing and sensor web technologies for public and environmental health surveillance and crisis management: trends, OGC standards and application examples. International Journal of Health Geographics, 10(67), 1–29.Google Scholar
  8. Bray, D. B. (2013). When the state supplies the commons: origins, changes, and design of Mexico’s common property regime. Journal of Latin American Geography, 12(1), 33–55.CrossRefGoogle Scholar
  9. Caro-Borrero, A., Corbera, E., Neitzel, K. C., & Almeida-Leñero, L. (2015). “We are the city lungs”: payments for ecosystem services in the outskirts of Mexico City. Land Use Policy, 43, 138–148.CrossRefGoogle Scholar
  10. Connolly, P. (2009). Observing the evolution of irregular settlements: Mexico City’s colonias populares, 1990 to 2005. International Development Planning Review, 31(1), 1–35.CrossRefGoogle Scholar
  11. Davis, M. (2004). Planet of slums: urban involution and the informal proletariat. New Left Review, 26, 5–34.Google Scholar
  12. Dovey, K., & King, R. (2012). Informal urbanism and the taste for slums. Tourism Geographies, 14(2), 275–293.CrossRefGoogle Scholar
  13. Dürr, E. (2012). Urban poverty, spatial representation and mobility: touring a slum in Mexico. International Journal of Urban and Regional Research, 36(4), 706–724.CrossRefGoogle Scholar
  14. Elwood, S., Goodchild, M. F., & Sui, D. Z. (2012). Researching volunteered geographic information: spatial data, geographic research, and new social practice. Annals of the Association of American Geographers, 102(3), 571–590.CrossRefGoogle Scholar
  15. van Gelder, J.-L., Cravino, M. C., & Ostuni, F. (2016). Housing informality in Buenos Aires: past, present and future? Urban Studies, 53(9), 1958–1975.CrossRefGoogle Scholar
  16. Geofabrik (2016). OpenStreetMap data extracts. Accessed 25 August 2017.
  17. Gilbert, L., & Jong, F. (2015). Entanglements of periphery and informality in Mexico City. International Journal of Urban and Regional Research, 39(3), 518–532.CrossRefGoogle Scholar
  18. Gilbert, L., Hhosla, P., & Jong, F. (2016). Precarization and Urban Growth in Metropolitan Mexico City. Espacialidades. Revista de temas contemporáneos sobre lugares, política y cultura 6(2), 5–32.Google Scholar
  19. Giles, J. (2005). Internet encyclopaedias go head to head. Nature, 438(7070), 900–901.CrossRefGoogle Scholar
  20. Gobierno del, D. F. (2012). Atlas geográfico del suelo de conservación del Distrito Federal. México: Secretaría del Medio Ambiente, Procuraduría Ambiental y del Ordenamiento Territorial del Distrito Federal.Google Scholar
  21. Goodchild, M. F. (2007). Citizens as sensors: the world of volunteered geography. GeoJournal, 69(4), 211–221.CrossRefGoogle Scholar
  22. Goodchild, M. F., & Li, L. (2012). Assuring the quality of volunteered geographic information. Spatial Statistics, 1, 110–120.CrossRefGoogle Scholar
  23. Graesser, J., Cheriyadat, A., Vatsavai, R. R., Chandola, V., Long, J., & Bright, E. (2012). Image based characterization of formal and informal neighborhoods in an urban landscape. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 5(4), 1164–1176.CrossRefGoogle Scholar
  24. Grau, H. R., & Aide, M. (2008). Globalization and land-use transitions in Latin America. Ecology and Society 13(2), 16.Google Scholar
  25. Gray, C. L. (2009). Rural out-migration and smallholder agriculture in the southern Ecuadorian Andes. Population and Environment, 30(4–5), 193–217.CrossRefGoogle Scholar
  26. Hagene, T. (2010). Everyday political practices, democracy and the environment in a native village in Mexico City. Political Geography, 29(4), 209–219.CrossRefGoogle Scholar
  27. Haklay, M., Basiouka, S., Antoniou, V., & Ather, A. (2010). How many volunteers does it take to map an area well? The validity of Linus’ law to volunteered geographic information. The Cartographic Journal, 47(4), 315–322.CrossRefGoogle Scholar
  28. Hardin, G. (1968). The tragedy of the commons. Science, 162, 1243–1248.CrossRefGoogle Scholar
  29. INEGI (2012). Estadísticas Censales a Escalas Geoelectorales. Principales Resultados del Censo de Población y Vivienda 2010, Accessed 25 September 2017.
  30. Jean, N., Burke, M., Xie, M., Davis, W. M., Lobell, D. B., & Ermon, S. (2016). Combining satellite imagery and machine learning to predict poverty. Science, 353(6301), 790–794.CrossRefGoogle Scholar
  31. Jujnovsky, J., González-Martínez, T. M., Cantoral-Uriza, E. A., & Almeida-Leñero, L. (2012). Assessment of water supply as an ecosystem service in a rural-urban watershed in southwestern Mexico City. Environmental Management, 49(3), 690–702.CrossRefGoogle Scholar
  32. Kit, O., Lüdeke, M., & Reckien, D. (2013). Defining the bull’s eye: satellite imagery-assisted slum population assessment in Hyderabad, India. Urban Geography, 34(3), 413–424.CrossRefGoogle Scholar
  33. Kontgis, C., Schneider, A., Fox, J., Saksena, S., Spencer, J. H., & Castrence, M. (2014). Monitoring peri-urbanization in the greater Ho Chi Minh City metropolitan area. Applied Geography, 53, 377–388.CrossRefGoogle Scholar
  34. Kunze, C., & Hecht, R. (2015). Semantic enrichment of building data with volunteered geographic information to improve mappings of dwelling units and population. Computers, Environment and Urban Systems, 53, 4–18.CrossRefGoogle Scholar
  35. Lombard, M. (2014). Constructing ordinary places. Place-making in urban informal settlements in Mexico. Progress in Planning, 94, 1–53.CrossRefGoogle Scholar
  36. Mollá Ruíz-Gómez, M. (2005). El crecimiento de los asentamientos irregulares en áreas protegidas. La delegación Tlalpan. Investigaciones Geografícas, Boletín del Instituto de Geografía, UNAM, 60, 83–109.Google Scholar
  37. Naldi, L., Nilsson, P., Westlund, H., & Wixe, S. (2015). What is smart rural development? Journal of Rural Studies, 40, 90–101.CrossRefGoogle Scholar
  38. Ostrom, E., Burger, J., Field, C. B., Norgaard, R. B., & Policansky, D. (1999). Revisiting the commons: local lessons, global challenges. Science, 284, 278–282.CrossRefGoogle Scholar
  39. Owen, K. K., & Wong, D. W. (2013). An approach to differentiate informal settlements using spectral, texture, geomorphology and road accessibility metrics. Applied Geography, 38, 107–118.CrossRefGoogle Scholar
  40. Prenzel, B. (2004). Remote sensing-based quantification of land-cover and land-use change for planning. Progress in Planning, 61(4), 281–299.CrossRefGoogle Scholar
  41. Rodriguez Lopez, J. M., Rosso, P., Scheffran, J., Delgado Ramos, G. C. (2015). Remote sensing of sustainable rural-urban land use in Mexico City: a qualitative analysis for reliability and validity. Interdisciplina, 3 (7),321–342Google Scholar
  42. Rodriguez Lopez, J. M., Heider, K., & Scheffran, J. (2017a). Frontiers of urbanization: identifying and explaining urbanization hot spots in the south of Mexico City using human and remote sensing. Applied Geography, 79, 1–10.CrossRefGoogle Scholar
  43. Rodriguez Lopez, J. M., Heider, K., & Scheffran, J. (2017b). Human and remote sensing data to investigate the frontiers of urbanization in the south of Mexico City. Data in Brief, 11, 5–11.CrossRefGoogle Scholar
  44. Rothe, D. (2017). Seeing like a satellite: remote sensing and the ontological politics of environmental security. Security Dialogue, 48(4), 334–353.CrossRefGoogle Scholar
  45. Roy, D., Lees, M. H., Palavalli, B., Pfeffer, K., & Sloot, M. P. A. (2014). The emergence of slums: a contemporary view on simulation models. Environmental Modelling & Software, 59, 76–90.CrossRefGoogle Scholar
  46. Saavedra, Z., Ojeda Revah, L., & López Barrera, F. (2011). Identification of threatened areas of environmental value in the Conservation Area of Mexico City, and setting priorities for their protection. Investigaciones Geográficas, Boletín del Instituto de Geografía, UNAM, 74, 19–34.Google Scholar
  47. Schneibel, A., Stellmes, M., Revermann, R., Finckh, M., Röder, A., & Hill, J. (2013). Agricultural expansion during post-civil war period in southern Angola based on bi-temporal Landsat data. Biodiversity & Ecology, 5, 311–319.CrossRefGoogle Scholar
  48. SEDUVI (2009). CIUDADMX. Accessed 20 August 2017.
  49. SEGOB (2016). Diario Oficial de la Federación 29/01/2016. Accessed 02 February 2018.
  50. Su, S., Wang, Y., Luo, F., Mai, G., & Pu, J. (2014). Peri-urban vegetated landscape pattern changes in relation to socioeconomic development. Ecological Indicators, 46, 477–486.CrossRefGoogle Scholar
  51. Taubenböck, H., & Kraff, N. J. (2014). The physical face of slums: a structural comparison of slums in Mumbai, India, based on remotely sensed data. Journal of Housing and the Built Environment, 29(1), 15–38.CrossRefGoogle Scholar
  52. Taubenböck, H., Esch, T., Felbier, A., Wiesner, M., Roth, A., & Dech, S. (2012). Monitoring urbanization in mega cities from space. Remote Sensing of Environment, 117, 162–176.CrossRefGoogle Scholar
  53. Wigle, J. (2014). The ‘graying’ of ‘green’ zones: spatial governance and irregular settlement in Xochimilco, Mexico City. International Journal of Urban and Regional Research, 38(2), 573–589.CrossRefGoogle Scholar
  54. Woodcock, C. E., Allen, R., Anderson, M., Belward, A., Bindschadler, R., Cohen, W., Gao, F., Goward, S. N., Helder, D., Helmer, E., Nemani, R., Oreopoulos, L., Schott, J., Thenkabail, P. S., Vermote, E. F., Vogelmann, J., Wulder, M. A., & Wynne, R. (2008). Free access to Landsat imagery. Science, 320(5879), 1011.CrossRefGoogle Scholar
  55. Wulder, M. A., Masek, J. G., Cohen, W. B., Loveland, T. R., & Woodcock, C. E. (2012). Opening the archive: how free data has enabled the science and monitoring promise of Landsat. Remote Sensing of Environment, 122, 2–10.CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Research Group Climate Change and Security (CLISEC), Institute of GeographyUniversity of HamburgHamburgGermany

Personalised recommendations