Time trend tendency (1988–2014 years) of organochlorine pesticide levels in the adipose tissue of Veracruz inhabitants

  • Ana Laura Calderón-Garcidueñas
  • Stefan M. Waliszewski
  • Rubén Ruiz-Ramos
  • María del Carmen Martinez-Valenzuela
Article
  • 56 Downloads

Abstract

The population that lives in areas where organochlorine pesticides were spread in the past is still exposed to them through contaminated food, particulate matter, and vapors. Due to their lipophilic properties and resistance to metabolic reactions, they accumulate in tissues and fluids rich in lipids. The aim of the study was to monitor the concentrations of organochlorine pesticides in forensic adipose tissue samples of adult inhabitants of Veracruz City, Mexico, and compare their time trend levels from 1988 to 2014. During the study, hexachlorobenzene (HCB); lindane; β-hexachorocyclohexane; p,p′-dichlorodiphenyldichloroethylene (pp′DDE); p,p′-dichlorodiphenyldichloroethane (p,p′-DDT); and o,p′-dichlorodiphenyldichloroethane (o,p′-DDT) were determined. Our survey was divided into two periods: first, from the years 1988 to 1999, during which DDT was allowed to fight malaria and dengue vectors and the second from the years 2001 to 2014, after the DDT ban. A total of 1435 samples were analyzed. There were substantial differences in the forecasted time trend values of p,p′-DDE and p,p′-DDT in human adipose tissue samples in the two different periods. During the first period, p,p′-DDE decrease time trend was 1.198 mg/kg on lipid base per year; for the second one, decrease was 0.128 mg/kg on lipid base per year. p,p′-DDT decreased 0.507 mg/kg on lipid base during the first period and 0.039 mg/kg on lipid base for the second. The different concentrations may be explained by the cessation of fresh exposure after the first period and a more equilibrated decontamination tendency during the second period. This model was useful to show the decrease in the concentration of pesticides in human adipose tissue samples.

Keywords

Organochlorine pesticides Time tendency Adipose tissue Veracruz, Mexico 

Notes

Acknowledgments

We are grateful to S. Farías-Calderón for proofreading.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

“All procedures performed in studies involving human participants were in accordance with the ethical standards of the institutional and/or national research committee and with the 1964 Helsinki declaration and its later amendments or comparable ethical standards.”

Informed consent

Informed consent was obtained from the first degree relatives.

Supplementary material

10661_2018_6581_MOESM1_ESM.xlsx (82 kb)
ESM 1 (XLSX 82 kb)

References

  1. Alegría, H., Wong, F., Bidleman, T., Salvador Figueroa, M., Gold-Boucholt, G., Waliszewski, S., Ceja Moreno, V., & Infanzón, R. (2005). Ambient air levels of organochlorine pesticidas in air in southern Mexico. In A. V. Botello, J. Rendón von Osten, G. Gold Boucholt, & C. Agraz Hernandez (Eds.), Golfo de México contaminación e impacto ambiental. Tendencias y diagnóstico (2nd ed., pp. 225–236). Campeche: Universidad Autónoma de Campeche.Google Scholar
  2. Alegria, H., Wong, F., Jantunen, L. M., Bidleman, T. F., Salvador-Figueroa, M., Gold-Bouchot, G., Ceja-Moreno, V., Waliszewski, S. M., & Infanzon, R. (2008). Organochlorine pesticides and PCBs in air of southern México (2002–2004). Atmospheric Environment, 42(38), 8810–8818.CrossRefGoogle Scholar
  3. Boada, L. D., Sangil, M., Álvarez-León, E. E., Hernández-Rodríguez, G., Henriquez-Hernández, L. A., Camacho, M., Zumbado, M., Serra-Majem, L., & Luzardo, O. P. (2014). Consumption of foods of animal origin as determinant of contamination by organochlorine pesticides and polychlorobiphenyls: results from a population-based study in Spain. Chemosphere, 114, 121–128.CrossRefGoogle Scholar
  4. Caba, M., Meza, E., Waliszewski, S. M., & Martínez-Valenzuela, C. (2015). Inverse correlation among organochlorine pesticide levels to total lipid serum contents: a preliminary study in Veracruz, México. Environmental Monitoring and Assessment, 187, 5613–5621.CrossRefGoogle Scholar
  5. Daley, J. M., Paterson, G., & Drouillard, K. G. (2014). Bioamplification as a bioaccumulation mechanism for persistent organic pollutants (POPs) in wildlife. Reviews of Environmental Contamination and Toxicology, 227, 107–155.Google Scholar
  6. Dirtu, A. C., Dirinck, E., Malarvannan, G., Neels, H., Van Gaal, L., Jorens, P. G., & Covaci, A. (2013). Dynamics of organohalogenated contaminants in human serum from obese individuals during one year of weight loss treatment. Environmental Science and Technology, 47(21), 12441–12449.CrossRefGoogle Scholar
  7. El-Amrani, S., Pena-Abaurrea, M., Sanz-Landaluze, J., Ramos, L., Guinea, J., & Cámara, C. (2012). Bioconcentration of pesticides in zebrafish eleutheroembryos (Danio rerio). Science of the Total Environment, 425, 184–190.CrossRefGoogle Scholar
  8. Eskenazi, B., Chevrier, J., Goldman, R. L., Anderson, H. A., Bornman, M. S., Bouwman, H., Chen, A., Cohn, B. A., de Jager, C., Henshel, D. S., Leipzig, F., Leipzig, J. S., Lorenz, E. C., Snedeker, S. M., & Stapleton, D. (2009). The pine river statement: human health consequences of DDT use. Environmental Health Perspectives, 117, 1359–1367.CrossRefGoogle Scholar
  9. Gallo, M. V., Deane, G. D., De Caprio, A. P., & Schell, L. M. (2015). Changes in persistent organic pollutant levels from adolescence to young adulthood. Environmental Research, 40, 214–224.CrossRefGoogle Scholar
  10. Garg, R., & Smith, C. J. (2014). Predicting the bioconcentration factor of highly hydrophobic organic chemicals. Food Chemistry and Toxicology, 69, 252–259.CrossRefGoogle Scholar
  11. Gyalpo, T., Fritsche, L., Bouwman, H., Bornman, R., Scheringer, M., & Hungerbühler, K. (2012). Estimation of human body concentrations of DDT from indoor residual spraying for malaria control. Environmental Pollution, 169, 235–241.CrossRefGoogle Scholar
  12. Herrero-Mercado, M., Waliszewski, S. M., Caba, M., Martinez-Valenzuela, C., & Hernández-Chalate, F. (2010). Organochlorine pesticide levels in umbilical cord blood of newborn in Veracruz, Mexico. Bulletin of Environmental Contamination and Toxicology, 85, 367–371.CrossRefGoogle Scholar
  13. Herrero-Mercado, M., Waliszewski, S. M., Caba, M., Martínez-Valenzuela, C., Gómez- Arroyo, S., Villalobos-Pietrini, R., Cantú-Martínez, P. C., & Hernández-Chalate, F. (2011). Organochlorine pesticide gradient levels among maternal adipose tissue, maternal blood serum and umbilical blood serum. Bulletin of Environmental Contamination and Toxicology, 86(3), 289–293.CrossRefGoogle Scholar
  14. Jones, K. C., & de Voogt, P. (1999). Persistent organic pollutants (POPs): state of the science. Environmental Pollution, 100, 209–221.CrossRefGoogle Scholar
  15. Katagi, T. (2010). Bioconcentration, bioaccumulation and metabolism of pesticides in aquatic organisms. Reviews of Environmental Contamination and Toxicology, 204, 1–149.Google Scholar
  16. López-Carrillo, L., Torres-Arreola, L., Torres-Sánchez, L., Espinosa-Torres, F., Jiménez, C., Cebrián, M., Waliszewski, S., & Sáldate, O. (1996). Is DDT use a public health problem in Mexico? Environmental Health Perspectives, 104(6), 584–588.CrossRefGoogle Scholar
  17. Lotti, M. (2003). Pharmacokinetics and blood levels of polychlorinated biphenyls. Toxicological Reviews, 22, 203–215.CrossRefGoogle Scholar
  18. Malarvannan, G., Dirinck, E., Dirtu, A. C., Pereira-Fernandes, A., Neels, H., Jorens, P. G., Gaal, L. V., Blust, R., & Covaci, A. (2013). Distribution of persistent organic pollutants in two different fat compartments from obese individuals. Environment International, 55, 33–42.CrossRefGoogle Scholar
  19. Martínez-Valenzuela, M. C., Waliszewski, S. M., Gómez-Arroyo, S., Villalobos-Pietrini, R., Calderón-Vázquez, C., Ortega-Martínez, D., Meza, E., & Caba, M. (2017). Comparison of organochlorine pesticide levels between human blood serum and adipose tissue. Revista Internacional de Contaminacion Ambiental, 33(3), 393–340.  https://doi.org/10.20937/RICA.2017.33.03.03.CrossRefGoogle Scholar
  20. Mrema, E. J., Rubino, F. M., Brambilla, G., Moretto, A., Tsatsakis, A. M., & Colosio, C. (2013). Persistent organochlorinated pesticides and mechanisms of their toxicity. Toxicology, 307, 74–88.CrossRefGoogle Scholar
  21. Norén, K., & Meironyté, D. (2000). Certain organochlorine and organobromine contaminants in Swedish human milk in perspective of past 20-30 years. Chemosphere, 40, 1111–1123.CrossRefGoogle Scholar
  22. Porta, M., Jariod, M., López, T., Pumarega, J., Puigdomènech, E., Malats, N., Grimalt, J. O., & Real, F. X. (2009). Correcting serum concentrations of organochlorine compounds by lipids: alternatives to the organochlorine/total lipids ratio. Environment International, 35, 1080–1085.CrossRefGoogle Scholar
  23. Ritter, R., Scheringer, M., MacLeod, M., Moeckel, C., Jones, K. C., & Hungerbühler, K. (2011). Intrinsic human elimination half-lives of polychlorinated biphenyls derived from the temporal evolution of cross-sectional biomonitoring data from United Kingdom. Environmental Health Perspectives, 119, 225–231.CrossRefGoogle Scholar
  24. Rivero-Rodríguez, L., Borja-Aburto, V. H., Santos-Burgoa, C., Waliszewski, S., Rios, C., & Cruz, V. (1997). Exposure assessment for workers applying DDT to control malaria in Veracruz, Mexico. Environmental Health Perspectives, 105(1), 98–101.CrossRefGoogle Scholar
  25. Turusov, V., Rakitsky, V., & Tomatis, L. (2002). Dichlorodiphenyltrichloroethane (DDT): ubiquity, persistence, and risks. Environmental Health Perspectives, 110(2), 125–128.CrossRefGoogle Scholar
  26. Van Dyk, J. C., Bouwman, H., Barnhoorn, I. E. J., & Bornman, M. S. (2010). DDT contamination from indoor residual spraying for malaria control. Science of the Total Environment, 408, 2745–2752.CrossRefGoogle Scholar
  27. Waliszewski, S. M., & Szymczynski, G. A. (1982). Simple, low-cost method for determination of selected chlorinated pesticides in fat samples. Journal of the Association of Official Analytical Chemists, 65(3), 677–679.Google Scholar
  28. Waliszewski, S. M., & Szymczynski, G. A. (1990). Determination of phthalate esters in human semen. Andrologia, 22, 69–73.CrossRefGoogle Scholar
  29. Waliszewski, S. M., Pardio, V. T., Waliszewski, K. N., Chantiri, J. N., Aguirre, A. A., Infanzon, R. M., & Rivera, J. (1997). Organochlorine pesticide residues in cow’s milk and butter in Mexico. Science of the Total Environment, 208(1), 127–132.CrossRefGoogle Scholar
  30. Waliszewski, S. M., Aguirre, A. A., Infanzon, R. M., Silva, C. S., & Siliceo, J. (2001). Organochlorine pesticide levels in maternal adipose tissue, maternal blood serum, umbilical blood serum, and milk from inhabitants of Veracruz, Mexico. Archives of Environmental Contamination and Toxicology, 40(3), 432–438.CrossRefGoogle Scholar
  31. Waliszewski, S. M., Gómez-Arroyo, S., Infanzón, R. M., Villalobos-Pietrini, R., & Maxwell Hart, M. (2003). Comparison of organochlorine pesticide levels between abdominal and breast adipose tissue. Bulletin of Environmental Contamination and Toxicology, 71, 156–162.CrossRefGoogle Scholar
  32. Waliszewski, S. M., Bermúdez, M. T., Infanzón, R. M., Silva, C. S., Carvajal, O., Trujillo, P., Gómez-Arroyo, S., Villalobos-Pietrini, R., Saldaña, V. A., Melo, G., Esquivel, S., Castro, F., Ocampo, H., Torres, J., & Hayward-Jones, P. M. (2005). Persistent organochlorine pesticide levels in breast adipose tissue in women with malignant and benign breast tumors. Bulletin of Environmental Contamination and Toxicology, 75(4), 752–759.CrossRefGoogle Scholar
  33. Waliszewski, S. M., Valencia Quintana, R., Corona, C. A., Herrero, M., Sánchez, K., Aguirre, H., Aldave, I. A., Gómez Arroyo, S., & Villalobos Pietrini, R. (2010). Comparison of organochlorine pesticide levels in human adipose tissue of inhabitants from Veracruz and Puebla, Mexico. Archives of Environmental Contamination and Toxicology, 58, 230–236.CrossRefGoogle Scholar
  34. Waliszewski, S. M., Caba, M., Herrero-Mercado, M., Saldarriaga-Noreña, H., Meza, E., Zepeda, R., Valencia Quintana, R., & Infanzon, R. (2012). Organochlorine pesticide residue levels in blood serum of inhabitants from Veracruz, Mexico. Environmental Monitoring and Assessment, 184, 5613–5621.CrossRefGoogle Scholar
  35. Waliszewski, S. M., Caba, M., Saldarriaga-Noreña, H., Martínez, A. J., Meza, E., Valencia Quintana, R., & Zepeda, R. (2014). Organochlorine pesticide level differences among female inhabitants from Veracruz, Puebla and Tabasco, Mexico. Bulletin of Environmental Contamination and Toxicology, 93, 233–237.CrossRefGoogle Scholar
  36. Wong, F., Alegria, H., Jantunen, L. M., Bidleman, T. F., Salvador-Figueroa, M., Gold-Bouchot, G., Ceja-Moreno, V., Waliszewski, S. M., & Infanzon, R. (2008). Organochlorine pesticides in soil and air of southern Mexico: chemical profiles and potential for soil emissions. Atmospheric Environment, 42(37), 7737–7745.CrossRefGoogle Scholar
  37. Yang, W., Jia, H., Xian, L., Jinjie, L., & Yuanhui, Z. (2012). Linear and non-linear relationships between bioconcentration and hydrophobicity: theoretical consideration. Environmental Toxicology and Pharmacology, 34, 200–208.CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • Ana Laura Calderón-Garcidueñas
    • 1
  • Stefan M. Waliszewski
    • 1
  • Rubén Ruiz-Ramos
    • 1
  • María del Carmen Martinez-Valenzuela
    • 2
  1. 1.Instituto de Medicina ForenseUniversidad VeracruzanaVeracruzMexico
  2. 2.Universidad de OccidenteLos MochisMexico

Personalised recommendations