Advertisement

A new large-scale index (AcED) for assessing traffic noise disturbance on wildlife: stress response in a roe deer (Capreolus capreolus) population

  • Carlos Iglesias-Merchan
  • Fernando Horcajada-Sánchez
  • Luis Diaz-Balteiro
  • Gema Escribano-Ávila
  • Carlos Lara-Romero
  • Emilio Virgós
  • Aimara Planillo
  • Isabel Barja
Article

Abstract

Anthropogenic noise is a growing ubiquitous and pervasive pollutant as well as a recognised stressor that spreads throughout natural ecosystems. However, there is still an urgent need for the assessment of noise impact on natural ecosystems. This article presents a multidisciplinary study which made it possible to isolate noise due to road traffic to evaluate it as a major driver of detrimental effects on wildlife populations. A new indicator has been defined: AcED (the acoustic escape distance) and faecal cortisol metabolites (FCM) were extracted from roe deer faecal samples as a validated indicator of physiological stress in animals moving around in two low-traffic roads that cross a National Park in Spain. Two key findings turned out to be relevant in this study: (i) road identity (i.e. road type defined by traffic volume and average speed) and AcED were the variables that best explained the FCM values observed in roe deer, and (ii) FCM concentration was positively related to increasing traffic volume (road type) and AcED values. Our results suggest that FCM analysis and noise mapping have shown themselves to be useful tools in multidisciplinary approaches and environmental monitoring. Furthermore, our findings aroused the suspicion that low-traffic roads (< 1000 vehicles per day) could be capable of causing higher habitat degradation than has been deemed until now.

Keywords

Cortisol metabolites Noise modelling Physiological stress Low traffic road National park Road ecology 

Notes

Acknowledgements

Permission to do research in the former Peñalara Natural Park (now called Sierra of Guadarrama National Park) was granted by the Regional Government of Madrid for two consecutive years. Special thanks and acknowledgements go to Juan Vielva (Park Director) and the entire staff of the National Park. Thanks are given to Harald Aagesen Muñoz and Douglas Manwell (Brüel and Kjaer) for instrumental support and also to PRS and Diana Badder for editing the English. The work of Luis Diaz-Balteiro was funded by the Spanish Ministry of Education and Science under project AGL2011-25825. Also, part of this study was funded by the Spanish Ministry for Innovation and Science by the grant CALCOFIS: CGL-2009-13013. Carlos Lara-Romero y Gema Escribano-Avila were supported by a Juan de la Cierva postdoctoral fellowship. We also want to thank an anonymous reviewer for their careful reading of our manuscript and both Prof. G.B. Wiersma and Dr. J.A. Elvir for their work and patience as editors during the reviewing process.

Supplementary material

10661_2018_6573_Fig5_ESM.gif (398 kb)
Appendix A

(GIF 398 kb)

10661_2018_6573_MOESM1_ESM.tiff (2.5 mb)
High Resolution (TIFF 2537 kb)
10661_2018_6573_MOESM2_ESM.doc (36 kb)
Appendix B (DOC 36 kb)
10661_2018_6573_MOESM3_ESM.docx (17 kb)
Appendix C (DOCX 17 kb)

References

  1. Babisch, W., Beule, B., Schust, M., Kersten, N., & Ising, H. (2005). Traffic noise and risk of myocardial infarction. Epidemiology, 16(1), 33–40.  https://doi.org/10.1097/01.ede.0000147104.84424.24.CrossRefGoogle Scholar
  2. Barber, J. R., Crooks, K. R., & Fristrup, K. M. (2010). The costs of chronic noise exposure for terrestrial organisms. Trends in Ecology & Evolution, 25, 180–189.  https://doi.org/10.1016/j.tree.2009.08.002.CrossRefGoogle Scholar
  3. Barja, I., Silván, G., Martínez-Fernández, L., & Illera, J. C. (2011). Physiological stress responses, faecal marking behaviour, and reproduction in wild European pine martens (Martes martes). Journal of Chemical Ecology, 37(3), 253–259.  https://doi.org/10.1016/j.jsbmb.2007.03.008.CrossRefGoogle Scholar
  4. Barja, I., Escribano-Avila, G., Lara-Romero, C., Virgós, E., Benito, J., & Elena Rafart, E. (2012). Non-invasive monitoring of adrenocortical activity in European badgers (Meles meles) and effects of sample collection and storage on faecal cortisol metabolite concentrations. Animal Biology, 62, 419–432.  https://doi.org/10.1163/157075612X642914.CrossRefGoogle Scholar
  5. Barton, K. 2017. MuMIn: multi-model inference. R package version 1.40.0. https://CRAN.R-project.org/package=MuMIn
  6. Blickley, J. L., & Patricelli, G. L. (2010). Impacts of anthropogenic noise on wildlife: research priorities for the development of standards and mitigation. J Int Wildl Law Policy, 13, 274–292.  https://doi.org/10.1080/13880292.2010.524564.CrossRefGoogle Scholar
  7. Blickley, J. L., Word, K. R., Krakauer, A. H., Phillips, J. L., Sells, S. N., Taff, C. C., et al. (2012). Experimental chronic noise is related to elevated fecal corticosteroid metabolites in lekking male greater sage-grouse (Centrocercus urophasianus). PLoS One, 7(11), e50462.  https://doi.org/10.1371/journal.pone.0050462.CrossRefGoogle Scholar
  8. Bonier, F., Martin, P. R., Moore, I. T., & Wingfield, J. C. (2009). Do baseline glucocorticoids predict fitness? Trends in Ecology & Evolution, 24(11), 634–642.  https://doi.org/10.1016/j.tree.2009.04.013.CrossRefGoogle Scholar
  9. Brearley, G., McAlpine, C., Bell, S., & Bradley, A. (2012). Influence of urban edges on stress in an arboreal mammal: a case study of squirrel gliders in southeast Queensland, Australia. Landsc Ecol, 27(10), 1407–1419.  https://doi.org/10.1007/s10980-012-9790-8.CrossRefGoogle Scholar
  10. Brown, C. L., Hardy, A. R., Barber, J. R., Fristrup, K. M., Crooks, K. R., & Angeloni, L. M. (2012). The effect of human activities and their associated noise on ungulate behavior. PLoS One, 7(7), e40505.  https://doi.org/10.1371/journal.pone.0040505.CrossRefGoogle Scholar
  11. Brüel & Kjær. (2001). Environmental noise. Naerum: Brüel & Kjær Sound & Vibration Measurement A/S.Google Scholar
  12. Brüel & Kjær. (2012). Technical documentation predictor type 7810. Version 8. User manual. Naerum: Brüel & Kjær Sound & Vibration Measurement A/S.Google Scholar
  13. Brumm, H. (2004). The impact of environmental noise on song amplitude in a territorial bird. Journal of Animal Ecology, 73(3), 434–440.  https://doi.org/10.1111/j.0021-8790.2004.00814.x.CrossRefGoogle Scholar
  14. Burnham, K. P., & Anderson, D. R. (2002). Model selection and multi-model inference: a practical information-theoretic approach. New York: Springer-Verlag.Google Scholar
  15. Caparrós, A., Campos, P., & Montero, G. (2001). Applied multiple use forest accounting in the Guadarrama pinewoods (Spain). Forest Systems, 10(3), 91–108.Google Scholar
  16. Charry, B., & Jones, J. (2009). Traffic volume as a primary road characteristic impacting wildlife: a tool for land use and transportation planning. In P. J. Wagner, D. Nelson, & E. Murray (Eds.), Proceedings of the international conference on ecology and transportation (pp. 159–172). Raleigh: Center for Transportation and the Environment, North Carolina State University.Google Scholar
  17. Ciuti, S., Northrup, J. M., Muhly, T. B., Simi, S., Musiani, M., Pitt, J. A., & Boyce, M. S. (2012). Effects of humans on behaviour of wildlife exceed those of natural predators in a landscape of fear. PLoS One, 7(11), e50611.  https://doi.org/10.1371/journal.pone.0050611.CrossRefGoogle Scholar
  18. Coffin, A. W. (2007). From roadkill to road ecology: a review of the ecological effects of roads. Journal of Transport Geography, 15(5), 396–406.  https://doi.org/10.1016/j.jtrangeo.2006.11.006.CrossRefGoogle Scholar
  19. Coulon, A., Guillot, G., Cosson, J. F., Angibault, J. M. A., Aulagnier, S., Cargnelutti, B., Galan, M., & Hewison, A. J. M. (2006). Genetic structure is influenced by landscape features: empirical evidence from a roe deer population. Molecular Ecology, 15, 1669–1679.  https://doi.org/10.1111/j.1365-294X.2006.02861.x.CrossRefGoogle Scholar
  20. Coulon, A., Morellet, N., Goulard, M., Cargnelutti, B., Angibault, J. M., & Hewison, A. M. (2008). Inferring the effects of landscape structure on roe deer (Capreolus capreolus) movements using a step selection function. Landscape Ecology, 23(5), 603–614.  https://doi.org/10.1007/s10980-008-9220-0.CrossRefGoogle Scholar
  21. Cowan, J. P. (1994). Handbook of environmental acoustics. New York: John Wiley & Sons, Inc.Google Scholar
  22. Clair, C. C. S., & Forrest, A. (2009). Impacts of vehicle traffic on the distribution and behaviour of rutting elk, Cervus elaphus. Behaviour, 146(3), 393–413.  https://doi.org/10.1163/156853909X410973.CrossRefGoogle Scholar
  23. Creel, S., Fox, J. E., Hardy, A., Sands, J., Garrott, B., & Peterson, R. O. (2002). Snowmobile activity and glucocorticoid stress responses in wolves and elk. Conservation Biology, 16(3), 809–814.  https://doi.org/10.1046/j.1523-1739.2002.00554.x.CrossRefGoogle Scholar
  24. Creel, S., Winnie, J. A., & Christianson, D. (2009). Glucocorticoid stress hormones and the effect of predation risk on elk reproduction. Proceedings of the National Academy of Sciences, 106(30), 12388–12393.  https://doi.org/10.1073/pnas.0902235106.CrossRefGoogle Scholar
  25. Crocker, M. J. (1998). Handbook of acoustics. New York: Wiley.Google Scholar
  26. de Coensel, B., & Botteldooren, D. (2006). The quiet rural soundscape and how to characterize it. Acta Acustica united with Acustica, 92(6), 887–897.Google Scholar
  27. de Kluijver, H., & Stoter, J. (2003). Noise mapping and GIS: optimising quality and efficiency of noise effect studies. Computers, Environment and Urban Systems, 27(1), 85–102.  https://doi.org/10.1016/S0198-9715(01)00038-2.CrossRefGoogle Scholar
  28. de la Torre, J. A. (2003). Guía de indicios de los mamíferos. Corzo Capreolus capreolus (Linnaeus, 1758). Galemys Spanish Journal of Mammalogy, 15(2), 61–64.Google Scholar
  29. Dehnhard, M., Clauss, M., Lechner-Doll, M., Meyer, H. H. D., & Palme, R. (2001). Noninvasive monitoring of adrenocortical activity in roe deer (Capreolus capreolus) by measurement of fecal cortisol metabolites. General and Comparative Endocrinology, 123(1), 111–120.  https://doi.org/10.1006/gcen.2001.7656.CrossRefGoogle Scholar
  30. EC. (2002). Directive 2002/49/EC of the European Parliament and of the Council of 25 June 2002 relating to the assessment and management of environmental noise. Official Journal of the European Communities, L189, 12–25.Google Scholar
  31. Eagles, P. F. (2002). Trends in park tourism: economics, finance and management. Journal of Sustainable Tourism, 10(2), 132–153.  https://doi.org/10.1080/09669580208667158.CrossRefGoogle Scholar
  32. EEA. (2014). Good practice on quiet areas. EEA technical report no. 4/2014. Luxembourg: European Environment Agency, Publications Office of the European Union.Google Scholar
  33. EEA. (2016). Quiet areas in Europe. The environment unaffected by noise pollution. EEA technical report no. 14/2016. European Environment Agency, Publications Office of the European Union, Luxembourg.Google Scholar
  34. Eigenbrod, F., Hecnar, S., & Fahrig, L. (2009). Quantifying the road-effect zone: threshold effects of a motorway on anuran populations in Ontario, Canada. Ecology and Society, 14(1), 24 http://www.ecologyandsociety.org/vol14/iss1/art24/ (Last accessed date: 03/03/2017).CrossRefGoogle Scholar
  35. Escribano-Avila, G., Pettorelli, N., Virgós, E., Lara-Romero, C., Lozano, J., Barja, I., Salas, F., & Puerta, M. (2013). Testing cort-fitness and cort-adaptation hypotheses in a habitat suitability gradient for roe deer. Acta Oecologica, 53, 38–48.  https://doi.org/10.1016/j.actao.2013.08.003.CrossRefGoogle Scholar
  36. Espinosa, A., Serrano, J. A., & Montori, A. (2012). Incidencia de los atropellos sobre la fauna vertebrada en el Valle de El Paular. LIC” Cuenca del río Lozoya y Sierra Norte. (Incidence of roadkills on vertebrates within the Valle de El Paular. LIC “Cuenca del río Lozoya y Sierra Norte”). Munibe. Sociedad de Ciencias Naturales Aranzadi (San Sebastian), 60, 209–236.Google Scholar
  37. ESRI. (2017). ArcGIS 10.5.1. Redlands: ESRI (Environmental Systems Research Institute.Google Scholar
  38. Fahrig, L., & Rytwinski, T. (2009). Effects of roads on animal abundance: an empirical review and synthesis. Ecology and Society, 14(1), 21 [online] URL: https://www.ecologyandsociety.org/vol14/iss1/art21/main.html (Last accessed date: 15/01/2018).CrossRefGoogle Scholar
  39. Falzarano, S. (2005). Natural ambient sound sample site selection. Grand Canyon National Park. Overflights and Natural Soundscape Program 2005. NPS Report No. GRCA-05-01. Retrieved from http://www.nps.gov/grca/naturescience/upload/sample-site.pdf (Last accessed date: 15/01/2018).
  40. Farina, S. (2014). Soundscape ecology: Principles, patterns, methods and applications. Netherlands: Springer.CrossRefGoogle Scholar
  41. Forman, R. T. (2000). Estimate of the area affected ecologically by the road system in the United States. Conservation Biology, 14(1), 31–35.CrossRefGoogle Scholar
  42. Forman, R. T., & Alexander, L. E. (1998). Roads and their major ecological effects. Annual Review of Ecology, Evolution, and Systematics, 29, 207–231.CrossRefGoogle Scholar
  43. Forman, R. T., Sperling, D., Bissonette, J. A., Clevenger, A. P., Cutshall, C. D., Dale, V. H., Fahrig, L., France, R., Goldman, C. R., Heanue, K., Jones, J. A., Swanson, F. J., Turrentine, T., & Winter, T. C. (2003). Road ecology. Science and solutions. Washington: Island Press.Google Scholar
  44. Francis, C. D., & Barber, J. R. (2013). A framework for understanding noise impacts on wildlife: an urgent conservation priority. Frontiers in Ecology and the Environment, 11(6), 305–313.  https://doi.org/10.1890/120183.CrossRefGoogle Scholar
  45. Françoso, R. D., Brandão, R., Nogueira, C. C., Salmona, Y. B., Machado, R. B., & Colli, G. R. (2015). Habitat loss and the effectiveness of protected areas in the Cerrado biodiversity hotspot. Natureza & Conservação, 13(1), 35–40.  https://doi.org/10.1016/j.ncon.2015.04.001.CrossRefGoogle Scholar
  46. Frid, A., & Dill, L. M. (2002). Human-caused disturbance stimuli as a form of predation risk. Conservation Ecology, 6(1), 11 [online] URL: https://www.ecologyandsociety.org/vol6/iss1/art11/ (Last accessed date: 15/01/2018).CrossRefGoogle Scholar
  47. Gagnon, J.W., Schweinsburg, R.E. & Dodd, N.L. (2007). Effects of roadway traffic on wild ungulates: a review of the literature and case study of elk in Arizona. Proceedings of the 2007 International Conference on Ecology and Transportation (ICOET 2007).Google Scholar
  48. Garriga, N., Santos, X., Montori, A., Richter-Boix, A., Franch, M., & Llorente, G. A. (2012). Are protected areas truly protected? The impact of road traffic on vertebrate fauna. Biodiversity and Conservation, 21(11), 2761–2774.  https://doi.org/10.1007/s10531-012-0332-0.CrossRefGoogle Scholar
  49. Geldmann, J., Barnes, M., Coad, L., Craigie, I. D., Hockings, M., & Burgess, N. D. (2013). Effectiveness of terrestrial protected areas in reducing habitat loss and population declines. Biological Conservation, 161, 230–238.  https://doi.org/10.1016/j.biocon.2013.02.018.CrossRefGoogle Scholar
  50. Gill, J. A., Norris, K., & Sutherlaland, W. J. (2001). Why behavioural responses may not reflect the population consequences of human disturbance. Biological Conservation, 97, 265–268.  https://doi.org/10.1016/S0006-3207(00)00002-1.CrossRefGoogle Scholar
  51. Gjestland, T. (2008). Background noise levels in Europe. Technical Report No. SINTEF A6631. Trondheim: SINTEF ICT https://www.easa.europa.eu/system/files/dfu/Background_noise_report.pdf. (Last accessed date: 15/01/2018).Google Scholar
  52. Grilo, C., Sousa, J., Ascensão, F., Matos, H., Leitão, I., Pinheiro, P., Costa, M., Bernardo, J., Reto, D., Lourenço, R., Santos-Reis, M., & Revilla, E. (2012). Individual spatial responses towards roads: implications for mortality risk. PLoS One, 7, e43811.  https://doi.org/10.1371/journal.pone.0043811.CrossRefGoogle Scholar
  53. Grilo, C., Ferreira, F. Z., & Revilla, E. (2015). No evidence of a threshold in traffic volume affecting road-kill mortality at a large spatio-temporal scale. Environmental Impact Assessment Review, 55, 54–58.  https://doi.org/10.1016/j.eiar.2015.07.003.CrossRefGoogle Scholar
  54. Hernández, R., Fernández, F., Cueto, J. L., & Gey, R. (2013). Las áreas naturales a través del análisis de su paisaje sonoro (natural areas through the soundscape analysis). Revista de Acústica, 44(1–2), 21–30.Google Scholar
  55. Hewison, A. J., Vincent, J. P., Joachim, J., Angibault, J. M., Cargnelutti, B., & Cibien, C. (2001). The effects of woodland fragmentation and human activity on roe deer distribution in agricultural landscapes. Canadian Journal of Zoology, 79, 679–689.  https://doi.org/10.1139/z01-032.CrossRefGoogle Scholar
  56. Horcajada-Sánchez, F., & Barja, I. (2015). Evaluating the effectiveness of two distance-sampling techniques for monitoring roe deer (Capreolus capreolus) densities. Ann Zool Fennici, 52, 167–176.  https://doi.org/10.5735/086.052.0304.CrossRefGoogle Scholar
  57. Huber, S., Palme, R., & Arnold, W. (2003). Effects of season, sex, and sample collection on concentrations of fecal cortisol metabolites in red deer (Cervus elaphus). General and Comparative Endocrinology, 130, 48–54.  https://doi.org/10.1016/S0016-6480(02)00535-X.CrossRefGoogle Scholar
  58. Ibisch, P. L., Hoffmann, M. T., Kreft, S., Pe'er, G., Kati, V., Biber-Freudenberger, L., DellaSala, D. A., Vale, M. M., Hobson, P. R., & Selva, N. (2016). A globalmap of roadless areas and their conservation status. Science, 354, 1423–1427.  https://doi.org/10.1126/science.aaf7166.CrossRefGoogle Scholar
  59. Iglesias Merchan, C., & Diaz-Balteiro, L. (2012). Mapas Estratégicos de Ruido en Espacios Naturales: MER del Parque Natural de Peñalara (Strategic Noise Maps in Natural Areas: Peñalara Natural Park SNM). 11th National Conference on environment, XI CONAMA, Madrid, Spain. Poster retrieved in English language from http://www.conama2012.conama.org/conama10/download/files/conama11/CT%202010/Paneles/1896700048_panel.pdf.
  60. Iglesias Merchan, C., & Diaz-Balteiro, L. (2013). Noise pollution mapping approach and accuracy on landscape scales. Sci Total Environ, 449, 115–125.  https://doi.org/10.1016/j.scitotenv.2013.01.063.CrossRefGoogle Scholar
  61. Iglesias, M. C., Diaz-Balteiro, L., & Soliño, M. (2014). Noise pollution in national parks: soundscape and economic valuation. Landscape Urban Plan, 123, 1–9.  https://doi.org/10.1016/j.landurbplan.2013.11.006.CrossRefGoogle Scholar
  62. Iglesias Merchan, C., Diaz-Balteiro, L., & de la Puente, J. (2016). Road traffic noise impact assessment in a breeding colony of cinereous vultures (Aegypius monachus) in Spain. The Journal of the Acoustical Society of America, 139, 1124–1131.  https://doi.org/10.1121/1.4943553.CrossRefGoogle Scholar
  63. Jaeger, J. A., Bowman, J., Brennan, J., Fahrig, L., Bert, D., Bouchard, J., Charbonneau, N., Frank, K., Gruber, B., & von Toschanowitz, K. T. (2005). Predicting when animal populations are at risk from roads: an interactive model of road avoidance behavior. Ecological Modelling, 185(2), 329–348.  https://doi.org/10.1016/j.ecolmodel.2004.12.015.CrossRefGoogle Scholar
  64. Jarnemo, A., & Liberg, O. (2005). Red fox removal and roe deer fawn survival—a 14-year study. Journal of Wildlife Management, 69(3), 1090–1098. https://doi.org/10.2193/0022-541X(2005)069[1090:RFRARD]2.0.CO;2.Google Scholar
  65. Kämmerle, J. L., Brieger, F., Kröschel, M., Hagen, R., Storch, I., & Suchant, R. (2017). Temporal patterns in road crossing behaviour in roe deer (Capreolus capreolus) at sites with wildlife warning reflectors. PloS one, 12(9), e0184761.  https://doi.org/10.1371/journal.pone.0184761.CrossRefGoogle Scholar
  66. Keay, J. M., Singh, J., Gaunt, M. C., & Kaur, T. (2006). Fecal glucocorticoids and their metabolites as indicators of stress in various mammalian species: a literature review. Journal of Zoo and Wildlife Medicine, 37(3), 234–244.  https://doi.org/10.1638/05-050.1.CrossRefGoogle Scholar
  67. Kight, C. R., & Swaddle, J. P. (2011). How and why environmental noise impacts animals: an integrative, mechanistic review. Ecology Letters, 14(10), 1052–1061.  https://doi.org/10.1111/j.1461-0248.2011.01664.x.CrossRefGoogle Scholar
  68. Kuehn, R., Hindenlang, K. E., Holzgang, O., Senn, J., Stoeckle, B., & Sperisen, C. (2007). Genetic effect of transportation infrastructure on roe deer populations (Capreolus capreolus). The Journal of Heredity, 98, 13–22.  https://doi.org/10.1093/jhered/esl056.CrossRefGoogle Scholar
  69. Leblond, M., Dussault, C., & Ouellet, J.-P. (2013). Avoidance of roads by large herbivores and its relation to disturbance intensity. Journal of Zoology, 289, 32–40.  https://doi.org/10.1111/j.1469-7998.2012.00959.x.CrossRefGoogle Scholar
  70. Leverington, F., Costa, K. L., Pavese, H., Lisle, A., & Hockings, M. (2010). A global analysis of protected area management effectiveness. Environmental Management, 46(5), 685–698.  https://doi.org/10.1007/s00267-010-9564-5.CrossRefGoogle Scholar
  71. Lynch, E., Joyce, D., & Fristrup, K. (2011). An assessment of noise audibility and sound levels in US National Parks. Landscape Ecology, 26(9), 1297–1309.  https://doi.org/10.1007/s10980-011-9643-x.CrossRefGoogle Scholar
  72. Mace, B. L., Marquit, J. D., & Bates, S. C. (2013). Visitor assessment of the mandatory alternative transportation system at Zion National Park. Environmental Management, 52(5), 1271–1285.  https://doi.org/10.1007/s00267-013-0164-z.CrossRefGoogle Scholar
  73. Makarewicz, R., & Galuszka, M. (2011). Empirical revision of noise mapping. Applied Acoustics, 72(8), 578–581.  https://doi.org/10.1016/j.apacoust.2010.10.012.CrossRefGoogle Scholar
  74. Malo, J. E., Suarez, F., & Diez, A. (2004). Can we mitigate animal–vehicle accidents using predictive models? Journal of Applied Ecology, 41(4), 701–710.  https://doi.org/10.1111/j.0021-8901.2004.00929.x.CrossRefGoogle Scholar
  75. Mata, C., Ruiz-Capillas, P., & Malo, J. E. (2017). Small-scale alterations in carnivore activity patterns close to motorways. European Journal of Wildlife Research, 63(4), 64.CrossRefGoogle Scholar
  76. McDonald, R. I., & Boucher, T. M. (2011). Global development and the future of the protected area strategy. Biological Conservation, 144(1), 383–392.  https://doi.org/10.1016/j.biocon.2010.09.016.CrossRefGoogle Scholar
  77. McClure, C. J., Ware, H. E., Carlisle, J., Kaltenecker, G., & Barber, J. R. (2013). An experimental investigation into the effects of traffic noise on distributions of birds: avoiding the phantom road. Proc R Soc Lond B Biol Sci, 280(1773), 20132290.  https://doi.org/10.1098/rspb.2013.2290.CrossRefGoogle Scholar
  78. Millspaugh, J. J., & Washburn, B. E. (2004). Use of fecal glucocorticoid metabolite measures in conservation biology research: considerations for application and interpretation. General and Comparative Endocrinology, 138(3), 189–199.  https://doi.org/10.1016/j.ygcen.2004.07.002.CrossRefGoogle Scholar
  79. Millspaugh, J. J., Woods, R. J., Hunt, K. E., Raedeke, K. J., Brundige, G. C., Washburn, B. E., & Wasser, S. K. (2001). Fecal glucocorticoid assays and the physiological stress response in elk. Wildlife Soc B, 29(3), 899–907.Google Scholar
  80. Mioduszewski, P., Ejsmont, J. A., Grabowski, J., & Karpiński, D. (2011). Noise map validation by continuous noise monitoring. Applied Acoustics, 72(8), 582–589.  https://doi.org/10.1016/j.apacoust.2011.01.012.CrossRefGoogle Scholar
  81. Möstl, E., & Palme, R. (2002). Hormones as indicators of stress. Domestic Animal Endocrinology, 23(1), 67–74.  https://doi.org/10.1016/S0739-7240(02)00146-7.CrossRefGoogle Scholar
  82. Mugica, F. F., Antón, M. G., & Ollero, H. S. (1998). Vegetation dynamics and human impact in the sierra de Guadarrama, central system, Spain. The Holocene, 8(1), 69–82.  https://doi.org/10.1191/095968398675691171.CrossRefGoogle Scholar
  83. Navarro-Castilla, A., Mata, C., Ruiz-Capillas, P., Palme, R., Malo, J. E., & Barja, I. (2014). Are motorways potential stressors of roadside wood mice (Apodemus sylvaticus) populations? PLoS One, 9(3), e91942.  https://doi.org/10.1371/journal.pone.0091942.CrossRefGoogle Scholar
  84. Ouis, D. (2001). Annoyance from road traffic noise: a review. Journal of Environmental Psychology, 21, 101–120.  https://doi.org/10.1006/jevp.2000.0187.CrossRefGoogle Scholar
  85. Parris, K. (2015). Ecological impacts of road noise and options for mitigation. In R. Van der Ree, D. J. Smith, & C. Grilo (Eds.), Handbook of road ecology (pp. 151–158). Hoboken: Wiley.Google Scholar
  86. Parris, K., Velik-Lord, M., & North, J. (2009). Frogs call at a higher pitch in traffic noise. Ecology and Society, 14(1), 25 [online] URL: https://www.ecologyandsociety.org/vol14/iss1/art25/ (Last accessed date: 15/01/2018).CrossRefGoogle Scholar
  87. Pater, L. L., Grubb, T. G., & Delaney, D. K. (2009). Recommendations for improved assessment of noise impacts of wildlife. Journal of Wildlife Management, 73, 788–795.  https://doi.org/10.2193/2006-235.CrossRefGoogle Scholar
  88. Paunović, K., Jakovljević, B., & Belojević, G. (2009). Predictors of noise annoyance in noisy and quiet urban streets. Sci. Total Environ, 407(12), 3707–3711.  https://doi.org/10.1016/j.scitotenv.2009.02.033.CrossRefGoogle Scholar
  89. Pettebone, D., Newman, P., Lawson, S. R., Hunt, L., Monz, C., & Zwiefka, J. (2011). Estimating visitors’ travel mode choices along the bear lake road in Rocky Mountain National Park. Journal of Transport Geography, 19(6), 1210–1221.  https://doi.org/10.1016/j.jtrangeo.2011.05.002.CrossRefGoogle Scholar
  90. Pijanowski, B. C., Villanueva-Rivera, L. J., Dumyahn, S. L., Farina, A., Krause, B. L., Napoletano, B. M., Gage, S. H., & Pieretti, N. (2011). Soundscape ecology: the science of sound in the landscape. Bioscience, 61(3), 203–216.  https://doi.org/10.1016/j.imic.2012.04.002.CrossRefGoogle Scholar
  91. R Core Team. (2017). R: A language and environment for statistical computing. Vienna: R Foundation for Statistical Computing URL: https://www.R-project.org/.Google Scholar
  92. Proppe, D. S., McMillan, N., Congdon, J. V., & Sturdy, C. B. (2017). Mitigating road impacts on animals through learning principles. Animal Cognition, 20(1), 19–31.  https://doi.org/10.1007/s10071-016-0989-y.CrossRefGoogle Scholar
  93. Reed, S. E., Boggs, J. L., & Mann, J. P. (2012). A GIS tool for modeling anthropogenic noise propagation in natural ecosystems. Environ Model Softw, 37, 1–5.  https://doi.org/10.1016/j.envsoft.2012.04.012.CrossRefGoogle Scholar
  94. Richards, S. A. (2005). Testing ecological theory using the information-theoretic approach: examples and cautionary results. Ecology, 86, 2805–2814.  https://doi.org/10.1890/05-0074.CrossRefGoogle Scholar
  95. Rytwinski, T., & Fahrig, L. (2012). Do species life history traits explain population responses to roads? A meta-analysis. Biological Conservation, 147, 87–98.  https://doi.org/10.1016/j.biocon.2011.11.023.CrossRefGoogle Scholar
  96. Sáez-Royuela, C., & Tellería, J. L. (1991). Roe deer (Capreolus capreolus) distribution in Central Spain. Folia Zoologica, 40, 37–45.Google Scholar
  97. Selva, N., Kreft, S., Kati, V., Schluck, M., Jonsson, B.-G., Mihok, B., Okarma, H., & Ibisch, P. L. (2011). Roadless and low-traffic areas as conservation targets in Europe. Environmental Management, 48(5), 865–877.  https://doi.org/10.1007/s00267-011-9751-z.CrossRefGoogle Scholar
  98. Shannon, G., Angeloni, L. M., Wittemyer, G., Fristrup, K. M., & Crooks, K. R. (2014). Road traffic noise modifies behaviour of a keystone species. Animal Behaviour, 94, 135–141.  https://doi.org/10.1016/j.anbehav.2014.06.004.CrossRefGoogle Scholar
  99. Shannon, G., McKenna, M. F., Angeloni, L. M., Crooks, K. R., Fristrup, K. M., Brown, E., Warner, K. A., Nelson, M. D., White, W., Briggs, J., McFarland, S., & Wittemyer, J. (2016). A synthesis of two decades of research documenting the effects of noise on wildlife. Biological Reviews, 91(4), 982–1005.  https://doi.org/10.1111/brv.12207.CrossRefGoogle Scholar
  100. Sharma, S., Lingras, P., Liu, G., & Xu, F. (2000). Estimation of annual average daily traffic on low-volume roads: factor approach versus neural networks. Transport Res Rec: Journal of the Transportation Research Board, 1719, 103–111.  https://doi.org/10.3141/1719-13.CrossRefGoogle Scholar
  101. Sheriff, M. J., Krebs, C. J., & Boonstra, R. (2010). Assessing stress in animal populations: do fecal and plasma glucocorticoids tell the same story? General and Comparative Endocrinology, 166(3), 614–619.  https://doi.org/10.1016/j.ygcen.2009.12.017.CrossRefGoogle Scholar
  102. Sheriff, M., Dantzer, B., Delehanty, B., Palme, R., & Boonstra, R. (2011). Measuring stress in wildlife: techniques for quantifying glucocorticoids. Oecologia, 166, 869–887.  https://doi.org/10.1007/s00442-011-1943-y.CrossRefGoogle Scholar
  103. Slabbekoorn, H., Bouton, N., van Opzeeland, I., Coers, A., ten Cate, C., & Popper, A. N. (2010). A noisy spring: the impact of globally rising underwater sound levels on fish. Trends in Ecology & Evolution, 25(7), 419–427.  https://doi.org/10.1016/j.tree.2010.04.005.CrossRefGoogle Scholar
  104. Stansfeld, S. A., & Matheson, M. P. (2003). Noise pollution: non-auditory effects on health. British Medical Bulletin, 68(1), 243–257.  https://doi.org/10.1093/bmb/ldg033.CrossRefGoogle Scholar
  105. Stankowich, T. (2008). Ungulate flight responses to human disturbance: a review and meta-analysis. Biological Conservation, 141(9), 2159–2173.  https://doi.org/10.1016/j.biocon.2008.06.026.CrossRefGoogle Scholar
  106. Shanley, C. S., & Pyare, S. (2011). Evaluating the road-effect zone on wildlife distribution in a rural landscape. Ecosphere, 2(2), 1–16.  https://doi.org/10.1890/ES10-00093.1.CrossRefGoogle Scholar
  107. Taillon, J., & Côté, S. D. (2008). Are faecal hormone levels linked to winter progression, diet quality and social rank in young ungulates? An experiment with white-tailed deer (Odocoileus virginianus) fawns. Behavioral Ecology and Sociobiology, 62(10), 1591–1600.  https://doi.org/10.1007/s00265-008-0588-2.CrossRefGoogle Scholar
  108. Touma, C., & Palme, R. (2005). Measuring fecal glucocorticoid metabolites in mammals and birds: the importance of validation. Annals of the New York Academy of Sciences, 1046(1), 54–74.  https://doi.org/10.1196/annals.1343.006.CrossRefGoogle Scholar
  109. Ward, A. I., White, P. C., & Critchley, C. H. (2004). Roe deer Capreolus capreolus behaviour affects density estimates from distance sampling surveys. Mammal Review, 34(4), 315–319.  https://doi.org/10.1111/j.1365-2907.2004.00046.x.CrossRefGoogle Scholar
  110. Ware, H. E., McClure, C. J., Carlisle, J. D., & Barber, J. R. (2015). A phantom road experiment reveals traffic noise is an invisible source of habitat degradation. Proceedings of the National Academy of Sciences, 112(39), 12105–12109.  https://doi.org/10.1073/pnas.1504710112.CrossRefGoogle Scholar
  111. WG-AEN. (2006). European Commission working group: assessment of exposure to noise. Good practice guide for strategic noise mapping and the production of data on noise exposure. Version 2. http://ec.europa.eu/environment/noise/pdf/wg_aen.pdf.
  112. Wright, A. J., Soto, N. A., Baldwin, A. L., Bateson, M., Beale, C. M., Clark, C., et al. (2007). Anthropogenic noise as a stressor in animals: a multidisciplinary perspective. International Journal of Comparative Psychology, 20(2), 250–273.Google Scholar
  113. Zbyryt, A., Bubnicki, J. W., Kuijper, D. P., Dehnhard, M., Churski, M., Schmidt, K., & Wong, B. (2017). Do wild ungulates experience higher stress with humans than with large carnivores? Behavioral Ecology, 29, 1–12.  https://doi.org/10.1093/beheco/arx142.Google Scholar
  114. Zwijacz-Kozica, T., Selva, N., Barja, I., Silván, G., Martínez-Fernández, L., Illera, J. C., & Jodłowski, M. (2013). Concentration of fecal cortisol metabolites in chamois in relation to tourist pressure in Tatra National Park (South Poland). Acta Theriologica, 58(2), 215–222.  https://doi.org/10.1007/s13364-012-0108-7.CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • Carlos Iglesias-Merchan
    • 1
    • 2
  • Fernando Horcajada-Sánchez
    • 3
  • Luis Diaz-Balteiro
    • 1
  • Gema Escribano-Ávila
    • 4
  • Carlos Lara-Romero
    • 4
  • Emilio Virgós
    • 4
  • Aimara Planillo
    • 5
  • Isabel Barja
    • 6
  1. 1.Research Group Economics for a Sustainable EnvironmentUniversidad Politécnica de MadridMadridSpain
  2. 2.CENERIC Research CentreTres CantosSpain
  3. 3.Centro de Investigación, Seguimiento y Evaluación, Parque Nacional de la Sierra de Guadarrama, Dirección General del Medio Ambiente, Comunidad de MadridMadridSpain
  4. 4.Área de Biodiversidad y Conservación, Escuela Superior de Ciencias Experimentales y TecnologíaUniversidad Rey Juan CarlosMóstolesSpain
  5. 5.Terrestrial Ecology Group (TEG), Departamento de EcologíaUniversidad Autónoma de MadridMadridSpain
  6. 6.Unidad de Zoología, Departamento de Biología, Facultad de CienciasUniversidad AutónomaMadridSpain

Personalised recommendations