Skip to main content
Log in

Predicting soil water content at − 33 kPa by pedotransfer functions in stoniness 1 soils in northeast Venezuela

  • Published:
Environmental Monitoring and Assessment Aims and scope Submit manuscript

Abstract

Soil water content is a key property in the study of water available for plants, infiltration, drainage, hydraulic conductivity, irrigation, plant water stress and solute movement. However, its measurement consumes time and, in the case of stony soils, the presence of stones difficult to determinate the water content. An alternative is the use of pedotransfer functions (PTFs), as models to predict these properties from readily available data. The present work shows a comparison of different widely used PTFs to estimate water content at-33 kPa (WR-33kPa) in high stoniness soils. The work was carried out in the Caramacate River, an area of high interest because the frequent landslides worsen the quality of drinking water. The performance of all evaluated PTFs was compared with a PTF generated for the study area. Results showed that the Urach’s PTF presented the best performance in relation to the others and could be used to estimate WR-33kPa in soils of Caramacate River basin. The calculated PTFs had a R2 of 0.65. This was slightly higher than the R2 of the Urach’s PTF. The inclusion of the rock fragment volume could have the better results. The weak performance of the other PTFs could be related to the fact that the mountain soils of the basin are rich in 2:1 clay and high stoniness, which were not used as independent variables for PTFs to estimate the WR-33kPa.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Abbasi, Y., Ghanbarian-Alavijeh, B., Liaghat, A. M., & Shorafa, M. (2011). Evaluation of pedotransfer functions for estimating soil water retention curve of saline and saline-alkali soils of Iran. Pedosphere, 21(2), 230–237.

    Article  Google Scholar 

  • Al Majou, H., Bruand, A., Duval, O., & Cousin, I. (2007). Variation of the water retention properties of soils: validity of class-pedotransfer functions. Comptes Rendus Geoscience, 339(9), 632–639.

    Article  Google Scholar 

  • Al Majou, H., Bruand, A., Duval, O., Le Bas, C., & Vautier, A. (2008a). Prediction of soil water retention properties after stratification by combining texture, bulk density and the type of horizon. Soil Use and Management, 24, 383–391.

    Article  Google Scholar 

  • Al Majou, H., Bruand, A., & Duval, O. (2008b). Use of in situ volumetric water content to improve prediction of soil water retention properties. Canadian Journal of Soil Science, 88, 522–541.

    Article  Google Scholar 

  • Ali Ghorbania, M., Shamshirband, S., Zare Haghie, D., Azania, A., BonakdarifIsa, H., & Ebteha, I. (2017). Application of firefly algorithm-based support vector machines for prediction of field capacity and permanent wilting point. Soil and Tillage Research., 172, 32–38.

    Article  Google Scholar 

  • Arruda, F. B.,Zullo Junior, J. & Oliveira J. B. (1987). Parâmetros de solo para o cálculo da água disponível com base na textura do solo. Revista Brasileira de Ciência do Solo. (in portuguese) 11, pp. 11–15.

  • Baker, L. (2008). Development of class pedotransfer functions of soil water retention—a refinement. Geoderma, 144(1), 225–230.

    Article  Google Scholar 

  • Bastet, G., Bruand, A., Voltz, M., Bornand, M., & Quétin, P. (1999). Performance of available pedotransfer functions for predicting the water retention properties of French soils. In M. T. Van Genuchten, F. J. Leij, & L. Wu (Eds.), Proceedings of the international workshop on characterization and measurement of the hydraulic properties of unsaturated porous media, parts 1 and 2 (pp. 981–992). Riverside: University of California.

    Google Scholar 

  • Bell, M. A., & Van Keulen, H. (1995). Soil pedotransfer functions for four Mexican soils. Soil Science Society of America, 59, 865–878.

    Article  CAS  Google Scholar 

  • Botula, Y., Van Ranst, E., & Cornelis, W. (2014). Pedotransfer functions to predict water retention for soils of the humid tropics: a review. Revista Brasileira de Ciência do Solo. (in portuguese), 38, 679–698.

    Article  Google Scholar 

  • Bouma, J. & Van Lanen, H. A. J. (1987). Transfer functions and threshold values: from land characteristics to land qualities. In: K.J. Beek et al (ed.). Quantified Land Evaluation. Proceedings of a Workshop, ISSS and SSSA. ITC Publications, Enschede. p. 106110.

  • Büchter, B., Leuenberger, J., Wierenga, P. J., & Richard, F. (1984). Preparation of large core samples from stony soils. Soil Science Society of America Journal, 48, 1460–1462.

    Article  Google Scholar 

  • Cong, Z., Lu, H., & Ni, G. (2014). A simplified dynamic method for field capacity estimation and its 286 parameter analysis. Water Science and Engineering, 7(4), 351–362.

    Google Scholar 

  • Coppola, A., Comegna, A., Dragonetti, G., Lamaddalena, N., Kader, A. M., & Comegna, V. (2011). Average moisture saturation effects on temporal stability of soil water spatial distribution at field scale. Soil &Tillage Research, 114, 155–164.

    Article  Google Scholar 

  • Coppola, A., Dragonetti, G., Comegna, A., Lamaddalena, N., Caushi, B., Haikal, M. A., & Basile, A. (2013). Measuring and modeling water content in stony soils. Soil &Tillage Research, 128, 9–22.

    Article  Google Scholar 

  • Delgado, F., & Barreto, L. (1988). Una aproximación matemática para la elaboración de curvas de retención de humedad en suelos representativos de los Llanos Occidentales. Revista UNELLEZ de Ciencia y Tecnología.(inSpanish), 6(1-2), 45–50.

    Google Scholar 

  • Dijkerman, J. C. (1988). An ustult-aquult-tropept catena in Sierra Leone, West Africa, II. Land qualities and land evaluation. Geoderma, 42, 29–49.

    Article  Google Scholar 

  • Frison, A., Cousin, I., Montagne, D., & Cornu, S. (2009). Soil hydraulic properties in relation to local rapid soil changes induced by field drainage: a case study. European Journal of Soil Science, 60, 662–670.

    Article  Google Scholar 

  • Gaiser, T., Graef, F., & Cordeiro, J. C. (2000). Water retention characteristics of soils with contrasting clay mineral composition in semi-arid tropical regions. Australian Journal of Soil Research, 38, 523–536.

    Article  Google Scholar 

  • Gee, G. W. & Or, D. (2002). Particle-size analysis. In: J. H. Dane and G. C. Topp (Ed.) Methods of soil analysis. Part 4. SSSA Book series N° 5, Madison: SSSA, pp. 255-293.

  • Grossman, R.B. & Reinsch, T.G.(2002). Bulk density and linear extensibility. p. 201–228. In J. H. Dane and G. C. Topp (ed.) Methods of soil analysis. Part 4. SSSA book Ser. 5. Madison: SSSA.

  • He, Y., DeSutter, T., Casey, F., Clay, D., Franzen, D., & Steele, D. (2015). Field capacity water as influenced by Na and EC: Implications for subsurface drainage. Geoderma, 245–246, 83–88.

    Article  Google Scholar 

  • Heanes, D. L. (1984). Determination of total organic-C in soils by an improved chromic acid digestion and spectrophotometric procedure. Communications in Soil Science and Plant Analysis, 15, 1191–1213.

    Article  CAS  Google Scholar 

  • Khetdana, C., Chittamarta, N., Tawornprueka, S., Kongkaewa, T., Onsamrarna, W., & Garréc, G. (2017). Influence of rock fragments on hydraulic properties of ultisols in Ratchaburi Province, Thailand. Geoderma Regional, 10, 21–28.

    Article  Google Scholar 

  • Lal, R. (1979). Physical properties and moisture retention characteristics of some Nigerian soils. Geoderma, 21, 209–223.

    Article  Google Scholar 

  • Li, D., Gao, G., Shao, M., & Fu, B. (2016). Predicting available water of soil from particle-size distribution and bulk density in an oasis–desert transect in northwestern China.Journal of Hydrology, 538, 539–550.

  • Liao, K. H., Xu, S. H., Wu, J. C., Ji, S. H., & Lin, Q. (2011). Assessing soil water retention characteristics and their spatial variability using pedotransfer functions. Pedosphere, 21(4), 413–422.

    Article  Google Scholar 

  • Ma, D. H., & Shao, M. A. (2008). Simulating infiltration into stony soils with adual-porosity model. Eur. J. 312. Soil Science, 59(5), 950–959.

    Article  Google Scholar 

  • McBratney, A. B., Minasny, B., Cattle, S. R., & Vervoort, R. W. (2002). From pedotransfer functions to soil inference systems. Geoderma, 109, 41–73.

    Article  Google Scholar 

  • McCormack, D. E., Young, K. K. & Darby, G. M. (1982). Rock fragments and the K factor of the universal soil loss equation. Chapter 8. In erosion and productivity of soil containing rock fragments.SSSA Special Publication.13. pp. 76-79.

  • Medeiros, J. C., Cooper, M., Dalla Rosa, J., Grimaldi, M., & Coquet, Y. (2014). Assessment of pedotransfer functions for estimating soil water retention curves for the amazon region. Revista Brasileira de Ciência do Solo, 38, 730–743.

    Article  CAS  Google Scholar 

  • Mi, M., Shao, M., & Liu, B. (2016). Effect of rock fragments content on water consumption, biomass and 322 water-use efficiency of plants under different water conditions. Ecological Engineering, 94, 574–582.

    Article  Google Scholar 

  • Minasny, B., & Hartemink, A. E. (2011). Predicting soil properties in the tropics. Earth-Science Reviews, 106, 52–62.

    Article  Google Scholar 

  • Nasri, B., Fouché, O., & Torri, D. (2015). Coupling published pedotransfer functions for the estimation of bulk density and saturated hydraulic conductivity in stony soils. Catena, 131, 99–108.

    Article  Google Scholar 

  • Nebel, A. L. C., Timm, L. C., Cornelis, W., Gabriels, D., Reichardt, K., Aquino, L. S., Pauletto, E. A., & Reinert, D. J. (2010). Pedotransfer functions related to spatial variability of water retention attributes for lowland soils. Revista Brasileira de Ciência do Solo, 34, 669–680.

    Article  Google Scholar 

  • Oliveira, L. B., Ribeiro, M. R., Jacomine, P. K. T., Rodrigues, J. V. V., & Marques, F. A. (2002). Funções de Pedotransferência para predição da umidad e retida a potenciais específicos em solos do Estado de Pernambuco. Revista Brasileira de Ciência do Solo. (in portuguese), 26, 315–323.

    Article  Google Scholar 

  • Patil, N. G., & Singh, S. K. (2016). Pedotransfer functions for estimating soil hydraulic properties: a review. Pedosphere, 26(4), 417–430.

    Article  Google Scholar 

  • Peraza, J. E. S. (2003). Retenção de água e pedofunções para solos do Rio Grande do Sul. Santa Maria, Universidade Federal de Santa Maria. (in portuguese) 118p. (Dissertação de Mestrado).

  • Pidgeon, J. D. (1972). The measurement and prediction of available water capacity of Ferrallitic soils in Uganda. Journal of Soil Science, 23, 431–444.

    Article  Google Scholar 

  • Pineda, C., & Viloria, J. (1997). Funciones de pedotransferencia para estimar la retención de humedad en suelos de la Cuenca del Lago de Valencia. Venesuelos. (in Spanish), 5(1 y 2), 39–45.

    Google Scholar 

  • Pineda, M. C., Elizalde, G., & Viloria, J. (2011). Relación suelo-paisaje en un sector de la Cuenca del Río Caramacate, Aragua, Venezuela. Revista de la Facultad de Agronomía. (in Spanish), 37(1), 27–37.

  • Rao, N. H. (1998). Grouping water storage properties of Indian soils for soil water balance model applications. Agricultural Water Management, 36, 99–109.

    Article  Google Scholar 

  • Rawls, W., Brakensiek, D., & Saxton, K. (1982). Estimation of soil water properties. Trans American Society of Agricultural Engineers, 25, 1316–1320.

    Article  Google Scholar 

  • Reichert, J. M., Albuquerque, J. A., Kaiser, D. R., Reinert, D. J., Urach, F. L., & Carlesso, R. (2009). Estimation of water retention and availability in soils of Rio Grande do Sul. Revista Brasileira de Ciência do Solo. (in portuguese), 33(6), 1547–1560. https://doi.org/10.1590/S0100-06832009000600004.

    Article  Google Scholar 

  • Richards, L. A. (1948). Porous plate apparatus for measuring moisture retention and transmission by soils. Soil Science., 66, 105–110.

    Article  CAS  Google Scholar 

  • Soil Survey Staff (2010). Keys to soil taxonomy. Washington, DC. In: U.S.D.A.-N.R.C. Service (Ed.), pp. 346.

  • Tetegan, M., Nicoullaud, B., Baize, D., Bouthierb, A., & Cousin, I. (2011). The contribution of rock fragments to the available water content of stony soils: proposition of new pedotransfer functions. Geoderma, 165, 40–49.

    Article  Google Scholar 

  • Tetegan, M., Richer de Forges, A. C., Verbeque, B., Nicoullaud, B., Desbourdes, C., Bouthier, A., Arrouays, D., & Cousin, I. (2015). The effect of soil stoniness on the estimation of water retention properties of soils: a case study from central France. Catena, 129, 95–102.

    Article  Google Scholar 

  • Tomasella, J., & Hodnett, M. G. (1998). Estimating soil water retention characteristics from limited data in Brazilian Amazonia. Soil Science., 163(3), 190–202.

    Article  CAS  Google Scholar 

  • Tukey, J. W. (1977). Exploratory data analysis. Reading: Addison-Wesley.

    Google Scholar 

  • Urbaní, F. & Rodríguez, J. A. (2003). Atlas Geológico de la Cordillera de la Costa, Venezuela. Co edición FUNVISIS y UCV, iii + 146 p. (146 mapas a escala 1:25 000).

  • Van Wesemael, B., Poesen, J., Kosmas, C. S., Danalatos, N. G., & Nachtergaele, J. (1996). Evaporation from cultivated soils containing rock fragments. Journal of Hydrology, 182(1), 65–82.

    Article  Google Scholar 

  • Wilding, L. P., & Drees, L. R. (1983). Spatial variability and pedology. In L. P. Wilding, N. E. Smeck, & G. F. Hall (Eds.), Pedogenesis and soil taxonomy: 1. concepts and interactions (pp. 83–116). Amsterdam: Elsevier.

    Chapter  Google Scholar 

  • Xiangsheng, Y., Guosheng, L., & Yanyu, Y. (2013). Comparison of three methods to develop pedotransfer functions for the saturated water content and field water capacity in permafrost region. Cold Regions Science and Technology, 88, 10–16.

    Article  Google Scholar 

  • Zhuang, J., Jin, Y., & Miyazaki, T. (2001). Estimating water retention characteristics from soil particle size distribution using a non-similar media concept. Soil Science, 166, 308–321.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors are grateful to the Abdus Salam International Centre for Theoretical Physics (ICTP), Trieste, Italy, the Venezuelan Organic Law for Science and Technology (LOCTI), and the Council of Scientific and Humanistic Development (CDCH) of the Universidad Central de Venezuela, the Universidad de Lleida (Catalonia, Spain), and the Brazilian Research Council (CNPq) for the scholarships and funding.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. C. Pineda.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pineda, M.C., Viloria, J., Martínez-Casasnovas, J.A. et al. Predicting soil water content at − 33 kPa by pedotransfer functions in stoniness 1 soils in northeast Venezuela. Environ Monit Assess 190, 161 (2018). https://doi.org/10.1007/s10661-018-6528-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10661-018-6528-3

Keywords

Navigation