Skip to main content

Advertisement

Log in

Impact of habitat heterogeneity on zooplankton assembly in a temperate river-floodplain system

  • Published:
Environmental Monitoring and Assessment Aims and scope Submit manuscript

Abstract

Dissimilar life features of Rotifera, Cladocera and Copepoda enable these organisms to respond differently to changes in the hydrological regime which influence alterations in environmental characteristics. We investigated the effect of habitat heterogeneity (e.g. eupotamal, parapotamal, palaeopotamal) on individual zooplankton group assemblages and biodiversity indices (α, β and γ diversity) during hydro regime change in floodplain waterbodies. Dissolved oxygen and organic nitrogen concentrations changed significantly among hydrological states while water depth was affected by both site and hydro regime replacement. Each studied site supported different zooplankton assemblage that highly depended on species-specific responses to hydro regime change. Also, individual zooplankton groups exhibited different correlations with specific environmental parameters regarding site change. Throughout the study, rotifers′ local (α) and among-community (β) diversities were susceptible to the site and inundation change while the microcrustacean biodiversity pattern diverged. Copepods highly discriminated different habitat types and hydrological phases at the regional scale (γ diversity), while we found a complete lack of biodiversity dependence on both site and hydrology for Cladocera. Our results show that heterogeneous environments support the development of different zooplankton assemblages that express the within-group dissimilarities. They also point to the importance of identifying processes in hydrologically variable ecosystems that influence biodiversity patterns at an individual zooplankton group level. Our results suggest the use of appropriate zooplankton groups as biological markers in natural habitats and stress the importance of proper management in preserving biodiversity in floodplain areas.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Adamczuk, M. (2015). Past, present, and future roles of small cladoceran Bosmina longirostris (O. F. Müller, 1785) in aquatic ecosystems. Hydrobiologia, 767, 1–11. https://doi.org/10.1007/s10750-015-2495-7.

    Article  Google Scholar 

  • Amoros, C. (1984). Crustaces Cladoceres. Introduction Pratique a la Systematique des Organismes des Eaux Continentales Francaises. Lyon: Université Claude Bernard.

    Google Scholar 

  • Amoros, C., & Bornette, G. (2002). Connectivity and biocomplexity in waterbodies of riverine floodplains. Freshwater Biology, 47, 761–776.

    Article  Google Scholar 

  • Amoros, C., & Roux, A. L. (1988). Interactions between water bodies within floodplains of large rivers: function and development of connectivity. Münstersche Geografische Arbeiten, 29, 125–130.

    Google Scholar 

  • Antón-Pardo, M., Armengo, X., & Ortells, R. (2016). Zooplankton biodiversity and community structure vary along spatiotemporal environmental gradients in restored peridunal ponds. Journal of Limnology, 75, 193–203.

    Google Scholar 

  • APHA (American Public Health Association). (1992). Standard methods for the examination of water and wastewater. Washington, DC: American Public Health Association.

    Google Scholar 

  • Baranyi, C., Hein, T., Holarek, C., Keckeis, S., & Schiemer, F. (2002). Zooplankton biomass and community structure in a Danube River floodplain system: effects of hydrology. Freshwater Biology, 47, 473–482.

    Article  Google Scholar 

  • Bonacci, O., Tadić, Z., Moržan, A., & Radeljak, I. (2002). Park prirode Kopački rit, Plan upravljanja. Osijek: Sektorska studija Hidrologija i meteorologija.

    Google Scholar 

  • Bonecker, C. C., & Lansac-Toha, F. A. (1996). Community structure of rotifers in two environments of the upper River Parana floodplain (MS)—Brazil. Hydrobiologia, 325, 137–150.

    Article  CAS  Google Scholar 

  • Bos, D., Cumming, B., & Smol, J. (1999). Cladocera and Anostraca from the Interior Plateau of British Columbia, Canada, as paleolimnological indicators of salinity and lake level. Hydrobiologia, 392, 129–141.

    Article  CAS  Google Scholar 

  • Bozelli, R. L., Thomaz, S. M., Padial, A. A., Lopes, P. M., & Bini, L. M. (2015). Floods decrease zooplankton beta diversity and environmental heterogeneity in an Amazonian floodplain system. Hydrobiologia, 753, 233–241.

    Article  CAS  Google Scholar 

  • Brandl, Z. (2005). Freshwater copepods and rotifers: predators and their prey. Hydrobiologia, 546, 475–489.

    Article  Google Scholar 

  • Casanova, S. M. C., Panarelli, E. A., & Henry, R. (2009). Rotifer abundance, biomass, and secondary production after the recovery of hydrologic connectivity between a river and two marginal lakes (São Paulo, Brazil). Limnologica, 39, 292–301.

    Article  Google Scholar 

  • Chaparro, G., Fontanarrosa, M. S., Cataldo, D., & O’Farrell, I. (2014). Hydrology driven factors might weaken fish predation effects on zooplankton structure in a vegetated warm temperate floodplain lake. Hydrobiologia, 752, 187–202. https://doi.org/10.1007/s10750-014-1993-3.

    Article  Google Scholar 

  • Chen, W., Liu, H., Zhang, Q., & Dai, S. (2011). Effects of nitrite and toxic Microcystis aeruginosa PCC7806 on the growth of freshwater rotifer Brachionus calyciflorus. Bulletin of Environmental Contamination and Toxicology, 86, 263–267.

    Article  CAS  Google Scholar 

  • Chisholm, C., Lindo, Z., & Gonzalez, A. (2011). Metacommunity diversity depends on network connectivity and arrangement in heterogeneous landscapes. Ecography, 34, 415–424. https://doi.org/10.1111/j.1600-0587.2010.06588.x.

  • Choi, J. Y., Jeong, K. S., La, G. H., & Joo, G. J. (2015). Spatio-temporal distribution of Diaphanosoma brachyurum (Cladocera: Sididae) in freshwater reservoir ecosystems: importance of maximum water depth and macrophyte beds for avoidance of fish predation. Journal of Limnology, 74(2), 403–413.

    Google Scholar 

  • Conde-Porcuna, J. M., Ramos-Rodríguez, E., & Pérez-Martínez, C. (2002). Correlations between nutrient concentrations and zooplankton populations in a mesotrophic reservoir. Freshwater Biology, 47, 1463–1473.

    Article  CAS  Google Scholar 

  • Cottenie, K., Nuytten, N., Michels, E., & De Meester, L. (2001). Zooplankton community structure and environmental conditions in a set of interconnected ponds. Hydrobiologia, 442, 339–350.

    Article  Google Scholar 

  • Death, R. G. (1995). Spatial patterns in benthic invertebrate community structure: products of habitat stability or are they habitat specific? Freshwater Biology, 33, 455–467.

    Article  Google Scholar 

  • DeSellas, A. M., Paterson, A. M., Sweetman, J. N., & Smol, J. P. (2008). Cladocera assemblages from the surface sediments of south-central Ontario (Canada) lakes and their relationships to measured environmental variables. Hydrobiologia, 600, 105–119.

    Article  CAS  Google Scholar 

  • Devol, A. H. (1981). Vertical distribution of zooplankton respiration in relation to the intense oxygen minimum zones in two British Columbia fjords. Journal of Plankton Research, 3(4), 593–602.

    Article  Google Scholar 

  • Dickerson, K. D., Medley, K. A., & Havel, J. E. (2009). Spatial variation in zooplankton community structure is related to hydrologic flow units in the Missouri river, USA. River Research and Applications, 26, 605–618.

    Google Scholar 

  • Einsle, U. (1993). Crustacea, Copepoda, Calanoida und Cyclopoida. Berlin: Gustav Fischer Verlag.

    Google Scholar 

  • Forbes, V. E., & Calow, P. (1999). Is the per capita rate of increase a good measure of population-level effects in ecotoxicology? Environmental Toxicology and Chemistry, 18, 1544–1556.

    Article  CAS  Google Scholar 

  • Forbes, A. E., & Chase, J. M. (2002). The role of habitat connectivity and landscape geometry inexperimental zooplankton metacommunities. Oikos, 96, 433–440.

    Article  Google Scholar 

  • Freitas, G. T., & Crispim, M. C. (2005). Seasonal effects on zooplanktonic community in a temporary lagoon of northeast Brazil. Acta Limnologica Brasiliensia, 17(4), 385–393.

    Google Scholar 

  • Frisch, D., Libman, B. S., D’Surney, S. J., & Threlkeld, S. T. (2005). Diversity of floodplain copepods (Crustacea) modified by flooding: species richness, diapause strategies and population genetics. Archiv für Hydrobiologie, 162, 1–17.

    Article  CAS  Google Scholar 

  • Gabaldón, C., Montero-Pau, J., Carmona, M. J., & Serra, M. (2015). Life-history variation, environmental fluctuations and competition in ecologically similar species: modeling the case of rotifers. Journal of Plankton Research, 37(5), 953–965.

    Article  Google Scholar 

  • Galir Balkić, A., Ternjej, I., & Špoljar, M. (2017). Hydrology driven changes in the rotifer trophic structure and implications for food web interactions. Ecohydrology, 11. https://doi.org/10.1002/eco.1917.

  • Galir, A., & Palijan, G. (2012). Change in metazooplankton abundance in response to flood dynamics and trophic relations in Danubian floodplain lake (Kopački rit, Croatia). Polish Journal of Ecology, 60, 777–787.

    Google Scholar 

  • George, D. G. (1976). Life cycle and production of Cyclops vicinus in a shallow eutrophic reservoir. Oikos, 27(1), 101–110.

    Article  Google Scholar 

  • Gonzalez, A. (2009). Metacommunities: spatial community ecology, Encyclopedia of life sciences (ELS). Chichester: John Wiley & Sons.

    Google Scholar 

  • Górski, K., Collier, K. J., Duggan, I. C., Taylor, C. M., & Hamilton, D. P. (2013). Connectivity and complexity of floodplain habitats govern zooplankton dynamics in a large temperate river system. Freshwater Biology, 58, 1458–1470. https://doi.org/10.1111/fwb.12144.

    Article  Google Scholar 

  • Goździejewska, A., Glińska-Lewczuk, K., Obolewski, K., Grzybowski, M., Kujawa, R., Lew, S., & Grabowska, M. (2016). Effects of lateral connectivity on zooplankton community structure in floodplain lakes. Hydrobiologia, 774, 7–21.

    Article  Google Scholar 

  • Hoffman, W. (1977). The influence of abiotic environmental factors on population dynamics in planktonic rotifers. Archiv für Hydrobiologie–BeiheftErgebnisse der Limnologie, 8, 77–83.

    Google Scholar 

  • Illyová, M. (2006). Zooplankton of two arms in the Morava River floodplain in Slovakia. Biologia (Bratisl), 61(5), 531–539.

    Article  Google Scholar 

  • Jeppesen, E., Nõges, P., Davidson, T. A., Haberman, J., Nõges, T., Blank, K., Lauridsen, T., Søndergaard, M., Sayer, C., Laugaste, R., Johansson, L. S., Bjerring, R., & Amsinck, S. L. (2011). Zooplankton as indicators in lakes: a scientific-based plea for including zoo-plankton in the ecological quality assessment of lakes according to the European Water Framework Directive (WFD). Hydrobiologia, 676, 279–297.

    Article  CAS  Google Scholar 

  • Jost, L. (2006). Entropy and diversity. Oikos, 113(2), 363–375.

    Article  Google Scholar 

  • Junk, W. J., Bayley, P. B., & Sparks, R. E. (1989). The flood pulse concept in river-floodplain system. Canadian Special Publication of Fisheries and Aquatic Sciences, 106, 110–127.

    Google Scholar 

  • Keckeis, S., Baranyi, C., Hein, T., Holarek, C., Riedler, P., & Schiemer, F. (2003). The significance of zooplankton grazing in a floodplain system of the River Danube. Journal of Plankton Research, 25(3), 243–253.

    Article  Google Scholar 

  • Kelso, B. H. L., Smith, R. V., Laughlin, R. J., & Lenox, S. D. (1997). Dissimilatory nitrate reduction in anaerobic sediments leading to river nitrite accumulation. Applied and Environmental Microbiology, 63, 4679–4685.

    CAS  Google Scholar 

  • Kneitel, J. M. (2014). Inundation timing, more than duration, affects the community structure of California vernal pool mesocosms. Hydrobiologia, 732, 71–83.

    Article  CAS  Google Scholar 

  • Korhola, A. (1999). Distribution patterns of Cladocera in subarctic Fennoscandian lakes and their potential in environmental reconstruction. Ecography, 22, 357–373.

    Article  Google Scholar 

  • Korhola, A., Olander, H., & Blom, T. (2000). Cladoceran and chironomid assemblages as qualitative indicators of water depth in subarctic Fennoscandian lakes. Journal of Paleolimnology, 24(1), 43–54.

    Article  Google Scholar 

  • Koste, W. (1978). Die Rädertiere Mitteleuropas. Berlin: Gebrüder Borntraeger.

    Google Scholar 

  • Lopes, P. M., Bini, L. M., Declerck, S. A. J., Farjalla, V. F., Vieira, L. C. G., Bonecker, C. C., Lansac-Toha, F. A., Esteves, F. A., & Bozelli, R. L. (2014). Correlates of zooplankton beta diversity in tropical lake systems. PLoS One, 9(10), e109581. https://doi.org/10.1371/journal.pone.0109581.

    Article  Google Scholar 

  • Magurran, A. (2004). Measuring biological diversity. Oxford: Blackwell Publishing.

    Google Scholar 

  • Margaritoria, F. (1983). Cladoceri (Crustacea: Cladocera). Guide per il Reconoscimiento delle Specie Animali delle Acque Interne Italiane. Roma: Consiglio Nazionale delle Ricerche.

    Google Scholar 

  • Maričić, S. (2005). Analyses of one of the rare natural retention in the Middle Danube. In H. P. Nachtnebel & C. J. Jugović (Eds.), Proceedings of the ninth international symposium on water management and hydraulic engineering (pp. 383–395). Vienna, Austria.

  • Massicotte, P., Frenette, J. J., Proulx, R., Pinel-Alloul, B., & Bertolo, A. (2014). Riverscape heterogeneity explains spatial variation in zooplankton functional evenness and biomass in a large river ecosystem. Landscape Ecology, 29, 67–79. https://doi.org/10.1007/s10980-013-9946-1.

    Article  Google Scholar 

  • Melo, T. X., & Medeiros, E. S. F. (2013). Spatial distribution of zooplankton diversity across temporary pools in a semiarid intermittent river. International Journal of Biodiversity, 2013, 1–13. https://doi.org/10.1155/2013/946361.

    Article  Google Scholar 

  • Mieczan, T., Adamczuk, M., Tarkowska-Kukuryk, M., & Nawrot, D. (2016). Effect of water chemistry on zooplanktonic and microbial communities across freshwater ecotones in different macrophyte-dominated shallow lakes. Journal of Limnology, 75(2), 262–274.

    Google Scholar 

  • Mihaljević, M., Getz, D., Tadić, Z., Živanović, B., Gucunski, D., Topić, J., et al. (1999). Kopački Rit—research survey and bibliography. Zagreb: Croatian Academy of Arts and Sciences.

    Google Scholar 

  • Mihaljević, M., Stević, F., Horvatić, J., & Hackenberger Kutuzović, B. (2009). Dual impact of the flood pulses on the phytoplankton assemblages in a Danubian floodplain lake (Kopački Rit Nature Park, Croatia). Hydrobiologia, 618, 77–88.

    Article  Google Scholar 

  • Mouquet, N., & Loreau, M. (2003). Community patterns in source-sink metacommunities. American Naturalist, 162, 544–557.

  • Ning, N. S. P., Gawne, B., Cook, R. A., & Nielse, D. L. (2013). Zooplankton dynamics in response to the transition from drought to flooding in four Murray–Darling Basin rivers affected by differing levels of flow regulation. Hydrobiologia, 702, 45–62.

    Article  Google Scholar 

  • Obolewski, K., Glińska-Lewczuk, K., Jarząb, N., Burandt, P., Kobus, S., Kujawa, R., Okruszko, T., Grabowska, M., Lew, S., Goździejewska, A., & Skrzypczak, A. (2014). Benthic invertebrates in floodplain lakes of a Polish River: structure and biodiversity analyses in relation to hydrological conditions. Polish Journal of Environmental Studies, 23(5), 1679–1689.

    CAS  Google Scholar 

  • Palijan, G. (2010). Određivanje graničnog vodostaja plavljenja Kopačkog rita na primjeru poplave u listopadu- studenom 2009. godine. Hrvatske vode, 74, 313–320.

    Google Scholar 

  • Pedruski, M. T., & Arnott, S. E. (2011). The effects of habitat connectivity and regional heterogeneity on artificial pond metacommunities. Oecologia, 166, 221–228. https://doi.org/10.1007/s00442-010-1814-y.

    Article  Google Scholar 

  • Peršić, V., & Horvatić, J. (2011). Spatial distribution of nutrient limitation in the Danube river floodplain in relation to hydrological connenctivity. Wetlands, 31, 933–944.

    Article  Google Scholar 

  • Ruttner-Kolisko, A. (1974). Plankton rotifers: biology and taxonomy. Stuttgart: Schweizerbart’sche Verlagsbuchhandlung.

    Google Scholar 

  • Siitonen, S., Väliranta, M., Weckström, J., Juutinen, S., & Korhola, A. (2011). Comparison of Cladocera-based water-depth reconstruction against other types of proxy data in Finnish Lapland. Hydrobiologia, 676, 155–172.

    Article  CAS  Google Scholar 

  • Simões, N. R., Ribeiro, S. M. M. S., & Sonoda, S. L. (2011). Diversity and structure of microcrustacean assemblages (Cladocera and Copepoda) and limnological variability in perennial and intermittent pools in a semi-arid region, Bahia, Brazil. Iheringia, Série Zoologia, 101(4), 317–324.

    Article  Google Scholar 

  • Soares, C. E. A., Velho, L. F. M., Lansac-Tôha, F. A., Bonecker, C. C., Landeiro, V. L., & Bini, L. M. (2015). The likely effects of river impoundment on beta-diversity of a floodplain zooplankton metacommunity. Natureza & Conservação, 13, 74–79.

    Article  Google Scholar 

  • Strickland, J. D. H., & Parsons, T. R. (1968). A practical hand-book of seawater analysis. Fisheries Research Board of Canada Bulletin, 167, 1–310.

    Google Scholar 

  • Tadić, Z., Bonacci, O., Bognar, A., Jović, F., & Radeljak, I. (2002). Park prirode Kopački rit, Plan upravljanja. Osijek: Sektorska studija Upravljanje vodama.

    Google Scholar 

  • Tall, L., Armellin, A., Pinel-Alloul, B., Méthot, G., & Hudon, C. (2016). Effects of hydrological regime, landcape features, and environment on macroinvertebrates in St. Lawrence River wetlands. Hydrobiologia, 778, 221–241. https://doi.org/10.1007/s10750-015-2531-7.

    Article  CAS  Google Scholar 

  • Tavşanoğlu, U. N., Šorf, M., Stefanidis, K., Brucet, S., Türkan, S., Agasild, H., Baho, D. L., Scharfenberger, U., Hejzlar, J., Papastergiadou, E., Adrian, R., Angeler, D. G., Zingel, P., Çakıroğlu, A. İ., Özen, A., Drakare, S., Søndergaard, M., Jeppesen, E., & Beklioğlu, M. (2017). Effects of nutrient and water level changes on the composition and size structure of zooplankton communities in shallow lakes under different climatic conditions: a pan-European mesocosm experiment. Aquatic Ecology, 51, 257–273. https://doi.org/10.1007/s10452-017-9615-6.

    Article  Google Scholar 

  • ter Braak, C. J. F., & Šmilauer, P. (2002). CANOCO reference manual and CanoDraw for windows user’s guide: software for canonical community ordination (version 4.5). Ithaca: Microcomputer Power.

    Google Scholar 

  • Thomaz, S. M., Bini, L. M., & Bozelli, R. L. (2007). Floods increase similarity among aquatic habitats in river-floodplain systems. Hydrobiologia, 579, 1–13.

    Article  Google Scholar 

  • Tockner, K., Malard, F., & Ward, J. V. (2000). An extension of the flood pulse concept. Hydrological Processes, 14, 2861–2883.

    Article  Google Scholar 

  • Trudeau, M. P., & Morin, A. (2016). Associations of event-scale flow hydrology with fish richness in urbanizing Canadian watersheds of Lake Ontario. Ecohydrology, 10. https://doi.org/10.1002/eco.1807.

  • UNESCO. (1966). Determinations of photosynthetic pigments in seawater. Report of SCOR––UNESCO.

  • Vadadi-Füllop, C. (2013). Microcrustacean assemblages in a large river: on the importance of the flow regime. Hydrobiologia, 702, 129–140.

    Article  Google Scholar 

  • Ward, J. V., & Tockner, K. (2001). Biodiversity: towards a unifying theme for river ecology. Freshwater Biology, 46, 807–819.

    Article  Google Scholar 

  • Weigelhofer, G., Preiner, S., Funk, A., Bondar-Kunze, E., & Hein, T. (2014). The hydrochemical response of small and shallow floodplain water bodies to temporary surface water connections with the main river. Freshwater Biology, 60, 781–793. https://doi.org/10.1111/fwb.12532.

    Article  Google Scholar 

  • Wetzel, R. G. (2001). Limnology. Lake and river ecosystems. San Diego: Academic press.

    Google Scholar 

  • White, J. C., Hannah, D. M., House, A., Beatson, S. J. V., Martin, A., & Wood, P. J. (2017). Macroinvertebrate responses to flow and stream temperature variability across regulated and non-regulated rivers. Ecohydrology, 10. https://doi.org/10.1002/eco.1773.

Download references

Acknowledgements

We are grateful to project leader Prof. Jasna Vidaković for her support. Many thanks to Goran Palijan PhD, Filip Stević PhD, Dubravka Špoljarić Maronić PhD and Željko Zahirović for field and laboratory assistance.

Funding

This study was supported by the Croatian Ministry of Science, Education and Sports, research project No. 285-0000000-2674.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anita Galir Balkić.

Electronic supplementary material

Online Resource 1

(PDF 359 kb)

Online Resource 2

(PDF 323 kb)

Online Resource 3

(PDF 265 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Galir Balkić, A., Ternjej, I. & Bogut, I. Impact of habitat heterogeneity on zooplankton assembly in a temperate river-floodplain system. Environ Monit Assess 190, 143 (2018). https://doi.org/10.1007/s10661-018-6524-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10661-018-6524-7

Keywords

Navigation