Skip to main content
Log in

Metal accumulation in populations of Calamagrostis epigejos (L.) Roth from diverse anthropogenically degraded sites (SE Europe, Serbia)

  • Published:
Environmental Monitoring and Assessment Aims and scope Submit manuscript

Abstract

Heavy metal accumulation is recognized as a very important global pollution problem in the last decades. Plant species have been recognized as natural bioindicators of environmental pollution, especially the amount of heavy metals in soils. Moreover, only a limited number of plant species can survive in highly contaminated soils. It is also known that metal accumulation can vary greatly among different populations of the same species. This study examines the chemical composition and accumulation potential of the expansive clonal grass Calamagrostis epigejos at five localities exposed to different levels of anthropogenic pressure. Considerable differences were observed between uptake, translocation, and accumulation of total and available heavy metals, such differences corresponding to soil physico-chemical characteristics and the level of site pollution. The results indicate that Calamagrostis epigejos uptakes a significant portion of the available fraction of heavy metals in the soil and stores it in the roots, thereby exhibiting a certain potential for metal phytostabilization.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Aiken, S. G., Dore, W. G., Lefkovitch, L. P., & Armstrong, K. C. (1989). Calamagrostis epigejos (Poaceae) in North America, especially Ontario. Canadian Journal of Botany, 67(11), 3205–3321. https://doi.org/10.1139/b89-400.

    Article  Google Scholar 

  • Alloway, B.J. (2013). Heavy Metals in Soils–Trace Metals and Metalloids in Soils and Their Bioavailability. Springer; Dordrecht, The Netherlands.

  • Alloway, B. J. (1995). Heavy metals in soils. London: Chapman & Hall. https://doi.org/10.1007/978-94-011-1344-1.

    Book  Google Scholar 

  • Al-Wabel, M. I., Sallam, A. E. A. S., Usman, A. R., Ahmad, M., El-Naggar, A. H., El-Saeid, M. H., Al-Faraj, A., El-Enazi, K., & Al-Romian, F. A. (2017). Trace metal levels, sources, and ecological risk assessment in a densely agricultural area from Saudi Arabia. Environmental Monitoring and Assessment, 189(6), 252. https://doi.org/10.1007/s10661-017-5919-1.

    Article  Google Scholar 

  • Antonijević, M. M., Dimitrijević, M. D., Milić, S. M., & Nujkić, M. M. (2012). Metal concentrations in the soils and native plants surrounding the old flotation tailings pond of the copper mining and smelting complex Bor (Serbia). Journal of Environmental Monitoring, 14(3), 866–877. https://doi.org/10.1039/c2em10803h.

    Article  Google Scholar 

  • Ashraf, M. A., Maah, M. J., & Yusoff, I. (2011). Heavy metals accumulation in plants growing in ex tin mining catchment. International Journal of Environmental Science & Technology, 8(2), 401–416. https://doi.org/10.1007/BF03326227.

    Article  CAS  Google Scholar 

  • Baumeister, W., & Ernst, W. H. O. (1978). Mineralstoffe und Pflanzenwachstum. Stuttgart: G Fischer.

    Google Scholar 

  • Bert, V., Lors, C., Ponge, J. F., Caron, L., Biaz, A., Dazy, M., & Masfaraud, J. F. (2012). Metal immobilization and soil amendment efficiency at a contaminated sediment landfill site: a field study focusing on plants, springtails, and bacteria. Environmental Pollution, 169, 1–11. https://doi.org/10.1016/j.envpol.2012.04.021.

    Article  CAS  Google Scholar 

  • Bloemen, M. L., Markert, B., & Lieth, H. (1995). The distribution of Cd, Cu, Pb and Zn in topsoils of Osnabrück in relation to land use. Science of the Total Environment, 166(1), 137–148. https://doi.org/10.1016/0048-9697(95)04520-B.

    Article  CAS  Google Scholar 

  • Bose, S., & Bhattacharyya, A. K. (2008). Heavy metal accumulation in wheat plant grown in soil amended with industrial sludge. Chemosphere, 70(7), 1264–1272. https://doi.org/10.1016/j.chemosphere.2007.07.062.

    Article  CAS  Google Scholar 

  • Bryndová, I., & Kovář, P. (2004). Dynamics of the demographic parameters of the clonal plant Calamagrostis epigejos (L.) Roth in two kinds of industrial deposits (abandoned sedimentation basins in Bukovina and Chvaletice). In P. Kovář (Ed.), Natural recovery of human-made deposits in landscape (biotic interactions and ore/ash-slag artificial ecosystems) (pp. 267–276). Prague: Academia.

    Google Scholar 

  • Chen, T. B., Zheng, Y. M., Lei, M., Huang, Z. C., Wu, H. T., Chen, H., Fan, K. K., Yu, K., Wu, X., & Tian, Q. Z. (2005). Assessment of heavy metal pollution in surface soils of urban parks in Beijing, China. Chemosphere, 60(4), 542–551. https://doi.org/10.1016/j.chemosphere.2004.12.072.

    Article  CAS  Google Scholar 

  • Davies, B. E. (1995). Lead. In B. J. Alloway (Ed.), Heavy metals in soils (pp. 206–223). London: Blackie Academic. https://doi.org/10.1007/978-94-011-1344-1_9.

    Chapter  Google Scholar 

  • Drakatos, P. A., Kalavrouziotis, I. K., Hortis, T. C., Varnanas, S. P., Drakatos, S. P., Bladenopoulou, S., & Fanariotou, I. N. (2002). Antagonistic action of Fe and Mn in Mediterranean-type plants irrigated with wastewater effluents following biological treatment. International Journal of Environmental Studies, 59(1), 125–132. https://doi.org/10.1080/00207230211961.

    Article  CAS  Google Scholar 

  • Dudka, S., & Adriano, D. C. (1997). Environmental impacts of metal ore mining and processing: a review. Journal of Environmental Quality, 26(3), 590–602. https://doi.org/10.2134/jeq1997.00472425002600030003x.

    Article  CAS  Google Scholar 

  • Dukić, D. (1960). Reke Beograda i njegove okoline (the rivers of Belgrade and its surroundings). Zbornik Radova Geografskog Instituta, 17, 151–163 (In Serbian).

    Google Scholar 

  • Ebbs, S. D., & Kochian, L. V. (1997). Toxicity of zinc and copper to Brassica species: implications for phytoremediation. Journal of Environmental Quality, 26(3), 776–781. https://doi.org/10.2134/jeq1997.00472425002600030026x.

    Article  CAS  Google Scholar 

  • Eisenhauer, N., Beßler, H., Engels, C., Gleixner, G., Habekost, M., Milcu, A., Partsch, S., Sabais, A. C. W., Scherber, C., Steinbeiss, S., Weigelt, A., Weisser, W. W., & Scheu, S. (2010). Plant diversity effects on soil microorganisms support the singular hypothesis. Ecology, 91(2), 485–496. https://doi.org/10.1890/08-2338.1.

    Article  CAS  Google Scholar 

  • Elhottová, D., Krištufek, V., Malý, S., & Frouz, J. (2009). Rhizosphere effect of colonizer plant species on the development of soil microbial community during primary succession on postmining sites. Communications in Soil Science and Plant Analysis, 40(1-6), 758–770. https://doi.org/10.1080/00103620802693193.

    Article  Google Scholar 

  • Ellenberg, H., Weber, H. E., Düll, R., Wirth, V., Werner, W., & Paulissen, D. (1991). Zeigerwerte von Pflanzen in Mitteleuropa. Scripta Geobotanica 18. Göttingen: Erich Goltze.

  • FAO. (1974). The Euphrates pilot irrigation project. Methods of soil analysis. Gadeb soil laboratory (a laboratory manual). Rome: Food and Agriculture Organization.

    Google Scholar 

  • Gajić, G., Pavlović, P., Kostić, O., Jarić, S., Đurđević, L., Pavlović, D., & Mitrović, M. (2013). Ecophysiological and biochemical traits of three herbaceous plants growing on the disposed coal combustion fly ash of different weathering stage. Archives of Biological Sciences, 65(4), 1651–1667. https://doi.org/10.2298/ABS1304651G.

    Article  Google Scholar 

  • Greger, M. (2004). Metal availability, uptake, transport and accumulation in plants. In M. N. Prasad & J. Hagemeyer (Eds.), Heavy metal stress in plants (pp. 1–27). Berlin: Springer. https://doi.org/10.1007/978-3-662-07743-6_1.

    Google Scholar 

  • ISO 11047 (1998). Soil quality—determination of cadmium, chromium, cobalt, copper, lead, manganese, nickel and zinc—flame and electrothermal atomic absorption spectrometric methods. Geneva: International Organization for Standardization.

  • ISO 11261 (1995). Soil quality. Determination of total nitrogen. Modified Kjeldahl method. Geneva: International Organization for Standardization.

  • ISO 11466. (1995). Soil quality-extraction of trace elements soluble in aqua regia. Geneva: International Organization for Standardization.

    Google Scholar 

  • Izaguirre-Mayoral, M. L., & Sinclair, T. R. (2005). Soybean genotypic difference in growth, nutrient accumulation and ultrastructure in response to manganese and iron supply in solution culture. Annals of Botany, 96(1), 149–158. https://doi.org/10.1093/aob/mci160.

    Article  CAS  Google Scholar 

  • Jelenković, R., Milovanović, D., Koželj, D., & Banješević, M. (2016). The mineral resources of the Bor metallogenic zone: a review. Geologia Croatica, 69(1), 143–155. https://doi.org/10.4154/GC.2016.11.

    Article  Google Scholar 

  • John, M. K. (1976). Interelationships between plant cadmium and uptake of some other elements from culture solutions by oats and lettuce. Environmental Pollution, 11(2), 85–95. https://doi.org/10.1016/0013-9327(76)90021-5.

    Article  CAS  Google Scholar 

  • Kabata-Pendias, A. (2011). Trace elements in soils and plants. Boca Raton: CRC Press, Taylor & Francis Group.

    Google Scholar 

  • Koronatova, N. G., & Milyaeva, E. V. (2011). Plant community succession in post-mined quarries in the northern-taiga zone of West Siberia. Contemporary Problems of Ecology, 4(5), 513–518. https://doi.org/10.1134/S1995425511050109.

    Article  Google Scholar 

  • Kovář, P., Štěpánek, J., Kirschner, J. (2004). Clonal diversity of Calamagrostis epigejos (L.) Roth in relation to type of industrial substrate and successional stage. In: Kovář P. (ed.): Natural Recovery of Human-Made Deposits in Landscape (Biotic Interactions and Ore/Ash-Slag Artificial Ecosystems), 285–293.

  • Lehmann, C. (1997). Clonal diversity of populations of Calamagrostis epigejos in relation to environmental stress and habitat heterogeneity. Ecography, 20(5), 483–490. https://doi.org/10.1111/j.1600-0587.1997.tb00416.x.

    Article  Google Scholar 

  • Lehmann, C., & Rebele, F. (2004a). Evaluation of heavy metal tolerance in Calamagrostis epigejos and Elymus repens revealed copper tolerance in a copper smelter population of C. epigejos. Environmental and Experimental Botany, 51(3), 199–213. https://doi.org/10.1016/j.envexpbot.2003.10.002.

    Article  CAS  Google Scholar 

  • Lehmann, C., & Rebele, F. (2004b). Assessing the potential for cadmium phytoremediation with Calamagrostis epigejos: a pot experiment. International Journal of Phytoremediation, 6(2), 169–183. https://doi.org/10.1080/16226510490454849.

    Article  CAS  Google Scholar 

  • Lehmann, C., & Rebele, F. (2005). Phenotypic plasticity in Calamagrostis epigejos (Poaceae): response capacities of genotypes from different populations of contrasting habitats to a range of soil fertility. Acta Oecologica, 28(2), 127–140. https://doi.org/10.1016/j.actao.2005.03.005.

    Article  Google Scholar 

  • Lindsay, W. L., & Norvell, W. A. (1978). Development of a DTPA soil test for zinc, iron, manganese, and copper. Soil Science Society of America Journal, 42(3), 421–428. https://doi.org/10.2136/sssaj1978.03615995004200030009x.

    Article  CAS  Google Scholar 

  • Lux, A., Martinka, M., Vaculík, M., & White, P. J. (2010). Root responses to cadmium in the rhizosphere: a review. Journal of Experimental Botany, 62(1), 21–37. https://doi.org/10.1093/jxb/erq281.

    Article  Google Scholar 

  • Malcová, R., Albrechtová, J., & Vosátka, M. (2001). The role of the extraradical mycelium network of arbuscular mycorrhizal fungi on the establishment and growth of Calamagrostis epigejos in industrial waste substrates. Applied Soil Ecology, 18(2), 129–142. https://doi.org/10.1016/S0929-1393(01)00156-1.

    Article  Google Scholar 

  • Mattina, M. I., Lannucci-Berger, W., Musante, C., & White, J. C. (2003). Concurrent plant uptake of heavy metals and persistent organic pollutants from soil. Environmental Pollution, 124(3), 375–378. https://doi.org/10.1016/S0269-7491(03)00060-5.

    Article  CAS  Google Scholar 

  • McDonald, R. C., Isbell, R. F., Speight, J. G., Walker, J., & Hopkins, M. S. (1998). Australian soil and land survey field handbook. Canberra: Australian Collaborative Land Evaluation Program.

    Google Scholar 

  • McKeague, J. A. (1978). Manual on soil sampling and methods of analysis. Ottawa: Canadian Society of Soil Science.

    Google Scholar 

  • Mitrović, M., Pavlović, P., Lakušić, D., Djurdjević, L., Stevanović, B., Kostić, O., & Gajić, G. (2008). The potential of Festuca rubra and Calamagrostis epigejos for the revegetation of fly ash deposits. Science of the Total Environment, 407(1), 338–347. https://doi.org/10.1016/j.scitotenv.2008.09.001.

    Article  Google Scholar 

  • Muchuweti, M., Birkett, J. W., Chinyanga, E., Zvauya, R., Scrimshaw, M. D., & Lester, J. N. (2006). Heavy metal content of vegetables irrigated with mixtures of wastewater and sewage sludge in Zimbabwe: implications for human health. Agriculture, Ecosystems & Environment, 112(1), 41–48. https://doi.org/10.1016/j.agee.2005.04.028.

    Article  CAS  Google Scholar 

  • Mudrinić, Č. (1975). Primary dispersion aureoles of the antimony deposit stolice (Western Serbia) [in Serbian]. Belgrade: Transactions of the Faculty of Mining and Geology, University of Belgrade.

    Google Scholar 

  • Nádaská, G., Lesny, J., & Michalik, I. (2010). Environmental aspect of manganese chemistry. Health and Environment Journal, 100702-A, 1–16.

    Google Scholar 

  • Nagajyoti, P. C., Lee, K. D., & Sreekanth, T. V. M. (2010). Heavy metals, occurrence and toxicity for plants: a review. Environmental Chemistry Letters, 8(3), 199–216. https://doi.org/10.1007/s10311-010-0297-8.

    Article  CAS  Google Scholar 

  • Navarrete, I. A., Gabiana, C. C., Dumo, J. R. E., Salmo, S. G., Guzman, M. A. L. G., Valera, N. S., & Espiritu, E. Q. (2017). Heavy metal concentrations in soils and vegetation in urban areas of Quezon City, Philippines. Environmental Monitoring and Assessment, 189(4), 145. https://doi.org/10.1007/s10661-017-5849-y.

    Article  Google Scholar 

  • Orwin, K. H., Buckland, S. M., Johnson, D., Turner, B. L., Smart, S., Oakley, S., & Bardgett, R. D. (2010). Linkages of plant traits to soil properties and the functioning of temperate grassland. Journal of Ecology, 98(5), 1074–1083. https://doi.org/10.1111/j.1365-2745.2010.01679.x.

    Article  Google Scholar 

  • Peplow, D. (1999). Environmental impacts of mining in Eastern Washington. Washington DC: Center for Water and Watershed studies fact sheet, University of Washington.

    Google Scholar 

  • Prach, K., & Pyšek, P. (2001). Using spontaneous succession for restoration of human-disturbed habitats: experience from Central Europe. Ecological Engineering, 17(1), 55–62. https://doi.org/10.1016/S0925-8574(00)00132-4.

    Article  Google Scholar 

  • Radosavljević, A. S., Stojanović, N. J., Radosavljević-Mihajlović, S. A., & Kašić, V. (2013). Polymetallic mineralization of the Boranja Orefield, Podrinje Metallogenic District, Serbia: zonality, mineral associations and genetic features. Periodico di Mineralogia, 82(1), 61–87.

    Google Scholar 

  • Ranđelović, D., Jovanović, S., Mihailović, N., Šajn, R. (2015). The content of manganese in soils and plants of Bor mine overburden site (Serbia, SE Europe). Proceedings of XXIII International Conference ‘Ecological Truth’, 17–20 June 2015, Kopaonik, Serbia, 186–192.

  • Rebele, F. (2000). Competition and coexistence of rhizomatous perennial plants along a nutrient gradient. Plant Ecology, 147(1), 77–94. https://doi.org/10.1023/A:1009808810378.

    Article  Google Scholar 

  • Rebele, F., & Lehmann, C. (2001). Biological flora of central Europe: Calamagrostis epigejos (L.) Roth. Flora, 196(5), 325–344. https://doi.org/10.1016/S0367-2530(17)30069-5.

    Article  Google Scholar 

  • Rutkowski, L. (2008). A key to identification of vascular plants of lowland Poland. Warszawa: Wydawnictwo Naukowe PWN.

    Google Scholar 

  • Salminen, R., Batista, M. J., Bidovec, M., Demetriades, A., De Vivo, B., De Vos, W., Duris, M., Gilucis, A., Gregorauskiene, V., Halamic, J., Heitzmann, P., Lima, A., Jordan, G., Klaver, G., Klein, P., Lis, J., Locutura, J., Marsina, K., Mazreku, A., O'Connor, P. J., Olsson, S. A., Ottesen, R.-T., Petersell, V., Plant, J. A., Reeder, S., Salpeteur, I., Sandström, H., Siewers, U., Steenfelt, A., & Tarvainen, T. (2005). Geochemical atlas of Europe. Part 1: background information, methodology and maps. Espoo: Geological Survey of Finland.

    Google Scholar 

  • Šerbula, S. M., Radojevic, A. A., Kalinovic, J. V., & Kalinovic, T. S. (2014). Indication of airborne pollution by birch and spruce in the vicinity of copper smelter. Environmental Science and Pollution Research, 21(19), 11510–11520. https://doi.org/10.1007/s11356-014-3120-4.

    Article  Google Scholar 

  • Sharma, R. K., & Agrawal, M. (2005). Biological effects of heavy metals: an overview. Journal of Environmental Biology, 26(2), 301–313.

    CAS  Google Scholar 

  • Shenker, M., & Chen, Y. (2005). Increasing iron availability to crops: fertilizers, organo-fertilizers, and biological approaches. Soil Science & Plant Nutrition, 51(1), 1–17. https://doi.org/10.1111/j.1747-0765.2005.tb00001.x.

    Article  CAS  Google Scholar 

  • Siedlecka, A. (1995). Some aspects of interactions between heavy metals and plant mineral nutrients. Acta Societatis Botanicorum Poloniae, 64(3), 265–272.

    Article  CAS  Google Scholar 

  • Somodi, I., Virágh, K., & Podani, J. (2008). The effect of the expansion of the clonal grass Calamagrostis epigejos on the species turnover of a semi-arid grassland. Applied Vegetation Science, 11(2), 187–192. https://doi.org/10.3170/2008-7-18354.

    Article  Google Scholar 

  • StatSoft. (2007). Statistica for Windows, version 8.0. Tulsa: StatSoft Inc..

    Google Scholar 

  • Stefanowicz, A. M., Kapusta, P., Błońska, A., Kompała-Bąba, A., & Woźniak, G. (2015). Effects of Calamagrostis epigejos, Chamaenerion palustre and Tussilago farfara on nutrient availability and microbial activity in the surface layer of spoil heaps after hard coal mining. Ecological Engineering, 83, 328–337. https://doi.org/10.1016/j.ecoleng.2015.06.034.

    Article  Google Scholar 

  • Süss, K., Storm, C., Zehm, A., & Schwabe, A. (2004). Succession in inland sand ecosystems: which factors determine the occurrence of the tall grass species Calamagrostis epigejos (L.) Roth and Stipa capillata L.? Plant Biology, 6(04), 465–476.

    Article  Google Scholar 

  • Thornton, I. (1991). Metal contamination of soils in urban areas. In P. Bullock, & P. J. Gregory (Eds.), Soils in the urban environment (pp. 47–75). Oxford: Blackwell Publishing Ltd., https://doi.org/10.1002/9781444310603.ch4

    Chapter  Google Scholar 

  • Tůma, I., Holub, P., & Fiala, K. (2009). Soil nutrient heterogeneity and competitive ability of three grass species (Festuca ovina, Arrhenatherum elatius and Calamagrostis epigejos) in experimental conditions. Biologia, 64(4), 694–704.

    Google Scholar 

  • Viard, B., Pihan, F., Promeyrat, S., & Pihan, J. C. (2004). Integrated assessment of heavy metal (Pb, Zn, cd) highway pollution: bioaccumulation in soil, Graminaceae and land snails. Chemosphere, 55(10), 1349–1359. https://doi.org/10.1016/j.chemosphere.2004.01.003.

    Article  CAS  Google Scholar 

  • Warden, B. T., & Reisenauer, H. M. (1991). Manganese-iron interactions in the plant-soil system. Journal of Plant Nutrition, 14(1), 7–30. https://doi.org/10.1080/01904169109364180.

    Article  CAS  Google Scholar 

  • Wohltmann, F. (1903). Chilisalpeter oder Ammoniak? Berlin: Parey.

    Google Scholar 

  • Zemanová, V., Pavlík, M., Pavlíková, D., Hnilicka, F., & Vondrackova, S. (2016). Responses to Cd stress in two Noccaea species (Noccaea praecox and Noccaea caerulescens) originating from two contaminated sites in Mezica, Slovenia and Redlschlag, Austria. Archives of Environmental Contamination and Toxicology, 70(3), 464–474. https://doi.org/10.1007/s00244-015-0198-8.

    Article  Google Scholar 

  • Zhang, X. Y., Lin, F. F., Wong, M. T., Feng, X. L., & Wang, K. (2009). Identification of soil heavy metal sources from anthropogenic activities and pollution assessment of Fuyang County, China. Environmental Monitoring and Assessment, 154(1), 439–449. https://doi.org/10.1007/s10661-008-0410-7.

    Article  CAS  Google Scholar 

  • Zimdahl, R. L., Arvik, J. H., & Hammond, P. B. (1973). Lead in soils and plants: a literature review. Critical Reviews in Environmental Science and Technology, 3(1–4), 213–224.

    Google Scholar 

Download references

Acknowledgements

Authors would like to thank Mr. Raymond Dooley for the linguistic editing.

Funding

The Ministry of Education, Science and Technological Development of the Republic of Serbia supported this research through Projects number 176016 and 173030.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dragana Ranđelović.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ranđelović, D., Jakovljević, K., Mihailović, N. et al. Metal accumulation in populations of Calamagrostis epigejos (L.) Roth from diverse anthropogenically degraded sites (SE Europe, Serbia). Environ Monit Assess 190, 183 (2018). https://doi.org/10.1007/s10661-018-6514-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10661-018-6514-9

Keywords

Navigation