Monitoring water quality in a hypereutrophic reservoir using Landsat ETM+ and OLI sensors: how transferable are the water quality algorithms?

  • Eliza S. Deutsch
  • Ibrahim Alameddine
  • Mutasem El-Fadel
Article
  • 18 Downloads

Abstract

The launch of the Landsat 8 in February 2013 extended the life of the Landsat program to over 40 years, increasing the value of using Landsat to monitor long-term changes in the water quality of small lakes and reservoirs, particularly in poorly monitored freshwater systems. Landsat-based water quality hindcasting often incorporate several Landsat sensors in an effort to increase the temporal range of observations; yet the transferability of water quality algorithms across sensors remains poorly examined. In this study, several empirical algorithms were developed to quantify chlorophyll-a, total suspended matter (TSM), and Secchi disk depth (SDD) from surface reflectance measured by Landsat 7 ETM+ and Landsat 8 OLI sensors. Sensor-specific multiple linear regression models were developed by correlating in situ water quality measurements collected from a semi-arid eutrophic reservoir with band ratios from Landsat ETM+ and OLI sensors, along with ancillary data (water temperature and seasonality) representing ecological patterns in algae growth. Overall, ETM+-based models outperformed (adjusted R2 chlorophyll-a = 0.70, TSM = 0.81, SDD = 0.81) their OLI counterparts (adjusted R2 chlorophyll-a = 0.50, TSM = 0.58, SDD = 0.63). Inter-sensor differences were most apparent for algorithms utilizing the Blue spectral band. The inclusion of water temperature and seasonality improved the power of TSM and SDD models.

Keywords

Landsat-7 Landsat-8 OLI ETM +  Chlorophyll-a TSM SDD Type-II waters Qaraoun reservoir 

Supplementary material

10661_2018_6506_MOESM1_ESM.docx (262 kb)
ESM 1 Presents the summary statistics of measured in situ Chlorophyll-a, TSM, and SDD concentrations by sensor type. It also shows the results of examining algorithm transferability for the calibrated Landsat 7 algorithms on spectral data from the Landsat 8 sensor and vice versa. (DOCX 262 kb)

References

  1. Al-Fahdawi, A. A. H., Rabee, A. M., & Al-Hirmizy, S. M. (2015). Water quality monitoring of Al-Habbaniyah Lake using remote sensing and in situ measurements. Environmental Modelling and Software, 187(6), 367.  https://doi.org/10.1007/s10661-015-4607-2 Google Scholar
  2. Alavipanah, S. K., Amiri, R., Matinfar, H. R., Emam, A. R., & Shamsipor, A. (2007). Cross-sensor analysis of TM and ETM + spectral information content in arid and urban areas. World Applied Sciences Journal, 2, 665–673.Google Scholar
  3. Akaike, H. (1974). A new look at the statistical model identification. IEEE Transactions on Automatic Control, 19, 716–723.CrossRefGoogle Scholar
  4. Allan, M. G., Hamilton, D. P., Hicks, B., & Brabyn, L. (2015). Empirical and semi-analytical chlorophyll a algorithms for multi-temporal monitoring of New Zealand lakes using Landsat. Environmental Monitoring and Assessment, 187(6), 364–386.  https://doi.org/10.1007/s10661-015-4585-4 CrossRefGoogle Scholar
  5. Alparslan, E., Aydoner, C., Tufekci, V., & Tufekci, H. (2007). Water quality assessment at Omerli dam using remote sensing techniques. Environmental Monitoring and Assessment, 135(1-3), 391–398.  https://doi.org/10.1007/s10661-007-9658-6 CrossRefGoogle Scholar
  6. APHA, WEF, AWWA. (2012). Standard methods for the examination of water and wastewater: 22nd edition (22nd ed.). Washington, D.C.: American Public Health Association, American Water Works Association, Water Environment Federation.Google Scholar
  7. Arenz, R. F., Lewis, W. M., & Saunders, J. F. (1996). Determination of chlorophyll and dissolved organic carbon from reflectance data for Colorado reservoirs. International Journal of Remote Sensing, 17(8), 1547–1566.  https://doi.org/10.1080/01431169608948723 CrossRefGoogle Scholar
  8. BAMAS (2005). Litani Water Quality Management Project: Technical Survey Report. (143). Beirut, Lebanon.Google Scholar
  9. Banerjee, S., Carlin, B. P., & Gelfand, A. E. (2014). Hierarchical modeling and analysis for spatial data. Boca Raton: CRC Press.Google Scholar
  10. Bonansea, M., Rodriquez, C. M., Pinotti, L., & Ferrero, S. (2015). Using multi-temporal Landsat imagery and linear mixed models for assessing water quality parameters in Río Tercero reservoir (Argentina ). Remote Sensing of Environment, 158, 28–41.  https://doi.org/10.1016/j.rse.2014.10.032 CrossRefGoogle Scholar
  11. Brezonik, P., Menken, K. D., & Bauer, M. (2005). Landsat-based remote sensing of lake water quality characteristics, including chlorophyll and colored dissolved organic matter (CDOM). Lake and Reservoir Management, 21(4), 373–382.  https://doi.org/10.1080/07438140509354442 CrossRefGoogle Scholar
  12. Brivio, P. A., Giardino, C., & Zilioli, E. (2001). Determination of chlorophyll concentration changes in Lake Garda using an image-based radiative transfer code for Landsat TM images. International Journal of Remote Sensing, 22(2-3), 487–502.  https://doi.org/10.1080/014311601450059 CrossRefGoogle Scholar
  13. Chander, G., Markham, B. L., & Helder, D. L. (2009). Summary of current radiometric calibration coefficients for Landsat MSS, TM, ETM+, and EO-1 ALI sensors. Remote Sensing of Environment, 113, 893–903.CrossRefGoogle Scholar
  14. Chao Rodríguez, Y., El Anjoumi, A., Domínguez Gómez, J. A., Rodríguez Pérez, D., & Rico, E. (2014). Using Landsat image time series to study a small water body in northern Spain. Environmental Monitoring and Assessment, 186(6), 3511–3522.  https://doi.org/10.1007/s10661-014-3634-8 Google Scholar
  15. Cheng, K. S., & Lei, T. C. (2001). Reservoir trophic state evaluation using Landsat TM images. Journal of the American Water Resources Association, 37(5), 1321–1334.  https://doi.org/10.1111/j.1752-1688.2001.tb03642.x CrossRefGoogle Scholar
  16. Chipman, J. W., Lillesand, T. M., Schmaltz, J. E., Leale, J. E., & Nordheim, M. J. (2004). Mapping lake water clarity with Landsat images in Wisconsin, USA. Canadian Journal of Remote Sensing, 30(1), 1–7.CrossRefGoogle Scholar
  17. Claverie, M., Vermote, E. F., Franch, B., & Masek, J. G. (2015). Evaluation of the Landsat-5 TM and Landsat-7 ETM+ surface reflectance products. Remote Sensing of Environment, 169, 390–403.CrossRefGoogle Scholar
  18. Craney, T. A., & Surles, J. G. (2002). Model-dependent variance inflation factor cutoff values. Quality Engineering, 14(3), 391–403.  https://doi.org/10.1081/QEN-120001878 CrossRefGoogle Scholar
  19. Czapla-Myers, J., Anderson, N., Bigger, S. (2013). Early ground-based vicarious calibration results for Landsat 8 OLI. In the Proceedings of the SPIE 8866, Earth Observing Systems XVIII. Volume 8866, 88660S. San Diego, California. doi:  https://doi.org/10.1117/12.2022493.
  20. Dekker, A. G., & Peters, S. W. M. (1993). Use of the thematic mapper for the analysis of eutrophic lakes: a case study in the Netherlands. International Journal of Remote Sensing, 14(5), 799–821.  https://doi.org/10.1080/01431169308904379 CrossRefGoogle Scholar
  21. Dekker, A. G., Vos, R. J., & Peters, S. W. (2001). Comparison of remote sensing data, model results and in situ data for total suspended matter (TSM) in the southern Frisian lakes. The Science of the Total Environment, 268(1-3), 197–214.  https://doi.org/10.1016/S0048-9697(00)00679-3 CrossRefGoogle Scholar
  22. Duan, H., Zhang, Y., Zhang, B., Song, K., & Wang, Z. (2007). Assessment of chlorophyll-a concentration and trophic state for Lake Chagan using Landsat TM and field spectral data. Environmental Monitoring and Assessment, 129(1-3), 295–308.  https://doi.org/10.1007/s10661-006-9362-y CrossRefGoogle Scholar
  23. ELARD. (2011). Business Plan for Combating Pollution in Qaraoun Lake (p. 475). Beirut, Lebanon: United Nations Development Programme (UNDP).Google Scholar
  24. El-Fadel, M., & Zeinati, M. (2000). Water resources management in Lebanon: Characterization, water balance and policy options. Water Resources Development, 16, 615–638.CrossRefGoogle Scholar
  25. El-Fadel, M., Maroun, R., Bsat, R., Makki, M., Reiss, P., & Rothberg, D. (2003). Water quality assessment of the Upper Litani River Basin and Lake Qaraoun, Lebanon. Forward program, Integrated Water and Coastal Resources Mangement (p. 77). Bethesda, MD: Development Alternatives, Inc..Google Scholar
  26. Fadel, A., Lemaire, B., Atoui, A., Vinçon-Leite, B., Amacha, N., Slim, K., et al. (2014). First assessment of the ecological status of Karaoun Reservoir, Lebanon. Lakes & Reservoirs: Research & Management, 19, 142–157.CrossRefGoogle Scholar
  27. Feng, M., Sexton, J. O., Huang, C., Masek, J. G., Vermote, E. F., Gao, F., et al. (2013). Global surface reflectance products from Landsat: Assessment using coincident MODIS observations. Remote Sensing of Environment, 134, 276–293.  https://doi.org/10.1016/j.rse.2013.02.031.CrossRefGoogle Scholar
  28. Fuller, L. M., Aichele, S. S., & Minnerick, R. J. (2004). Predicting water quality by relating Secchi-disk transparency and chlorophyll a measurments to satellite imagery for Michigan Inland lakes. Reston: USGS, Michigan Department of Environmental Quality.Google Scholar
  29. Frazier, P. S., & Page, K. J. (2000). Water body detection and delineation with Landsat TM data. Photogrammetric Engineering and Remote Sensing, 66, 1461–1467.Google Scholar
  30. Giardino, C., Pepe, M., Brivio, P. A., Ghezzi, P., & Zilioli, E. (2001). Detecting chlorophyll, Secchi disk depth and surface temperature in a sub-alpine lake using Landsat imagery. The Science of The Total Environment, 268(1-3), 19–29.CrossRefGoogle Scholar
  31. Gitelson, A. (1992). The peak near 700 nm on radiance spectra of algae and water: relationships of its magnitude and position with chlorophyll concentration. International Journal of Remote Sensing, 13(17), 3367–3373.  https://doi.org/10.1080/01431169208904125 CrossRefGoogle Scholar
  32. Gitelson, A., and Yacobi, Y. (1995). Reflectance in the red and near infra-red ranges of the spectrum as tool for remote chlorophyll estimation in inland waters-Lake Kinneret case study. In the Proceedings of the Eighteenth Convention of Electrical and Electronics Engineers in Israel, Tel Aviv, Israel, 07-08 Mar 1995. (pp. 5.2. 6/1-5.2. 6/5): IEEE. doi: https://doi.org/10.1109/EEIS.1995.514184.
  33. Gitelson, A., Szilagyi, F., & Mittenzwey, K. (1993). Improving quantitative remote sensing for monitoring of inland water quality. Water Research, 27(7), 1185–1194.  https://doi.org/10.1016/0043-1354(93)90010-F CrossRefGoogle Scholar
  34. Gitelson, A., Dall'Olmo, G., Moses, W., Rundquist, D., Barrow, T., Fisher, T., et al. (2008). A simple semianalytical model for remote estimation of chlorophyll-a in turbid waters: Validation. Remote Sensing of Environment, 112(9), 3582–3593.CrossRefGoogle Scholar
  35. Goslee, S. C. (2011). Analyzing remote sensing data in R : The landsat package. Journal of Statistical Software, 43, 1–25.CrossRefGoogle Scholar
  36. Greb, S. R., Martin, A. A., & Chipman, J. W. (2009). Water clarity monitoring of lakes in Wisconsin, USA using Landsat. In Proceedings of 33rd International Symposium of Remote Sensing of the Environment, Stresa, Italy, May 4-8 2009Google Scholar
  37. Gurlin, D., Gitelson, A. A., & Moses, W. J. (2011). Remote estimation of chl-a concentration in turbid productive waters—Return to a simple two-band NIR-red model? Remote Sensing of Environment, 115(12), 3479–3490.CrossRefGoogle Scholar
  38. Hadjimitsis, D. G., & Clayton, C. (2009). Assessment of temporal variations of water quality in inland water bodies using atmospheric corrected satellite remotely sensed image data. Environmental Monitoring and Assessment, 159(1-4), 281–292.  https://doi.org/10.1007/s10661-008-0629-3 CrossRefGoogle Scholar
  39. Han, L., Rundquist, D., Liu, L., Fraser, R., & Schalles, J. (1994). The spectral responses of algal chlorophyll in water with varying levels of suspended sediment. International Journal of Remote Sensing, 15(18), 3707–3718.CrossRefGoogle Scholar
  40. Hansen, C. H., Williams, G. P., Adjei, Z., Barlow, A., Nelson, J., & Miller, A. W. (2015). Reservoir water quality monitoring using remote sensing with seasonal models : Case study of five central-Utah reservoirs. Lake and Reservoir Management, 31(3), 225–240.  https://doi.org/10.1080/10402381.2015.1065937 CrossRefGoogle Scholar
  41. Härmä, P., Vepsäläinen, J., Hannonen, T., Pyhälahti, T., Kämäri, J., Kallio, K., Eloheimo, K., & Koponen, S. (2001). Detection of water quality using simulated satellite data and semi-empirical algorithms in Finland. The Science of the Total Environment, 268(1-3), 107–121.  https://doi.org/10.1016/S0048-9697(00)00688-4 CrossRefGoogle Scholar
  42. He, W., Chen, S., Liu, X., & Chen, J. (2008). Water quality monitoring in a slightly-polluted inland water body through remote sensing - Case study of the Guanting Reservoir in Beijing, China. Frontiers of Environmental Science and Engineering in China, 1, 163–171.  https://doi.org/10.1007/s11783-008-0027-7.CrossRefGoogle Scholar
  43. Helder, D.L., Pesta, F., Brinkmann, J., Leigh, L., Aaron, D., Markhan, B., Barsi, J., Morfitt, R., Micijevic, E., Czapla-Myers, J. (2013). Landsat-8 OLI: on-orbit spatial uniformity, absolute calibration and stability. In the Proceedings of the 22nd Conference on Characterization of Radiometric Calibration for Remote Sensing. Logan, Utah, 19-22 August 2013. https://digitalcommons.usu.edu/cgi/viewcontent.cgi?article=1025&context=calcon
  44. Hicks, B. J., Stichbury, G. A., Brabyn, L. K., Allan, M. G., & Ashraf, S. (2013). Hindcasting water clarity from Landsat satellite images of unmonitored shallow lakes in the Waikato region, New Zealand. Environmental Monitoring and Assessment, 185(9), 7245–7261.  https://doi.org/10.1007/s10661-013-3098-2 CrossRefGoogle Scholar
  45. Hijmans, R. J., & van Etten, J. (2014). Raster: Geographic data analysis and modeling. R package version (R package version 2.0-12 ed., Vol. 517).Google Scholar
  46. Holden, C. E., & Woodcock, C. E. (2016). An analysis of Landsat 7 and Landsat 8 underflight data and the implications for time series investigations. Remote Sensing of Environment, 185, 16–36.  https://doi.org/10.1016/j.rse.2016.02.052 CrossRefGoogle Scholar
  47. International Resources Group (2011). Litani River Basin Management Support Program. Litani River Basin Management Support (LRBMS) Program: United States Agency for International Development (USAID).Google Scholar
  48. Irons, J. R., Dwyer, J. L., & Barsi, J. A. (2012). The next Landsat satellite: the Landsat data continuity mission. Remote Sensing of Environment, 122, 11–21.  https://doi.org/10.1016/j.rse.2011.08.026 CrossRefGoogle Scholar
  49. Jurdi, M., Korfali, S. I., Karahagopian, Y., & Davies, B. E. (2002). Evaluation of water quality of the Qaraaoun Reservoir, Lebanon: Suitability for multipurpose usage. Environmental monitoring and assessment, 77(1), 11–30.CrossRefGoogle Scholar
  50. Kallio, K., Pulliainen, J., & Ylöstalo, P. (2005). MERIS, MODIS and ETM+ channel configurations in the estimation of lake water quality from subsurface reflectance using semi-analytical and empirical algorithms. Geophysica, 41(1-2), 31–55.Google Scholar
  51. Karakaya, N., Evrendilek, F., Aslan, G., Gungor, K., & Karaka, D. (2011). Monitoring of lake water quality along with trophic gradient using landsat data. International journal of Environmental Science and Technology, 8, 817–822.Google Scholar
  52. Ke, Y., Im, J., Lee, J., Gong, H., & Ryu, Y. (2015). Characteristics of Landsat 8 OLI-derived NDVI by comparison with multiple satellite sensors and in-situ observations. Remote Sensing of Environment, 164, 298–313.  https://doi.org/10.1016/j.rse.2015.04.004 CrossRefGoogle Scholar
  53. Khattab, M. F. O., & Merkel, B. J. (2014). Application of Landsat 5 and Landsat 7 images data for water quality mapping in Mosul dam Lake, northern Iraq. Arabian Journal of Geosciences, 7(9), 3557–3573.  https://doi.org/10.1007/s12517-013-1026-y CrossRefGoogle Scholar
  54. Kloiber, S. M., Brezonik, P. L., & Bauer, M. E. (2002a). Application of Landsat imagery to regional-scale assessments of lake clarity. Water Research, 36(17), 4330–4340.  https://doi.org/10.1016/S0043-1354(02)00146-X CrossRefGoogle Scholar
  55. Kloiber, S. M., Brezonik, P. L., Olmanson, L. G., & Bauer, M. E. (2002b). A procedure for regional lake water clarity assessment using Landsat multispectral data. Remote Sensing of Environment, 82(1), 38–47.  https://doi.org/10.1016/S0034-4257(02)00022-6 CrossRefGoogle Scholar
  56. Korfali, S. I., Jurdi, M., & Davies, B. E. (2006). Variation of metals in bed sediments of Qaraaoun Reservoir, Lebanon. Environmental monitoring and assessment, 115, 307–319.CrossRefGoogle Scholar
  57. Kutser, T. (2012). The possibility of using the Landsat image archive for monitoring long time trends in coloured dissolved organic matter concentration in lake waters. Remote Sensing of Environment, 123, 334–338.CrossRefGoogle Scholar
  58. Le, C., Li, Y., Zha, Y., Sun, D., Huang, C., & Lu, H. (2009). A four-band semi-analytical model for estimating chlorophyll a in highly turbid lakes: the case of Taihu Lake, China. Remote Sensing of Environment, 113(6), 1175–1182.  https://doi.org/10.1016/j.rse.2009.02.005 CrossRefGoogle Scholar
  59. Lee, Z., Zaneveld, J. R. V., Maritorena, S., Loisel, H., Doerffer, R., Lyon, P., et al. (2006). Remote sensing of inherent optical properties: fundamentals, tests of algorithms, and applications. In Z. Lee (Ed.), Reports of the International Ocean-Colour Coordinating Group (p. 89). Dartmouth, Canada: International Ocean-Colour Coordinating Group.Google Scholar
  60. Lim, J., & Choi, M. (2015). Assessment of water quality based on Landsat 8 operational land imager associated with human activities in Korea. Environmental monitoring and assessment, 187(6), 1–17.CrossRefGoogle Scholar
  61. Long, C. M., & Pavelsky, T. M. (2013). Remote sensing of suspended sediment concentration and hydrologic connectivity in a complex wetland environment. Remote Sensing of Environment, 129, 197–209.CrossRefGoogle Scholar
  62. Lymburner, L., Botha, E., Hestir, E., Anstee, J., Sagar, S., Dekker, A., & Malthus, T. (2016). Landsat 8: Providing continuity and increased precision for measuring multi-decadal time series of total suspended matter. Remote Sensing of Environment, 185, 108–118.  https://doi.org/10.1016/j.rse.2016.04.011 CrossRefGoogle Scholar
  63. Ma, R., & Dai, J. (2005). Investigation of chlorophyll-a and total suspended matter concentrations using Landsat ETM and field spectral measurement in Taihu Lake, China. International Journal of Remote Sensing, 26(13), 2779–2787.  https://doi.org/10.1080/01431160512331326648 CrossRefGoogle Scholar
  64. Maindonald, J., & Braun, W. J. (2014). DAAG: Data Analysis And Graphics data and functions. In R Core Team (Ed.), (Vol. R package version 1.20): R.Google Scholar
  65. Markogianni, V., Dimitriou, E., & Karaouzas, I. (2014). Water quality monitoring and assessment of an urban Mediterranean lake facilitated by remote sensing applications. Environmental monitoring and assessment, 186(8), 5009–5026.CrossRefGoogle Scholar
  66. Masek, J. G., Vermote, E. F., Saleous, N. E., Wolfe, R., Hall, F. G., Huemmrich, K. F., et al. (2006). A Landsat surface reflectance dataset for North American, 1990-2000. IEEE Geoscience and Remote Sensing Letters, 3(1), 68–72.CrossRefGoogle Scholar
  67. Mason, R. L., Gunst, R. F., & Hess, J. L. (2003). Statistical design and analysis of experiments: with applications to engineering and science (2nd ed.). Hoboken: John Wiley & Sons Ltd.  https://doi.org/10.1002/0471458503 CrossRefGoogle Scholar
  68. Matthews, M. W. (2011). A current review of empirical procedures of remote sensing in inland and near-coastal transitional waters. International Journal of Remote Sensing, 32(21), 6855–6899.  https://doi.org/10.1080/01431161.2010.512947 CrossRefGoogle Scholar
  69. Matthews, M. W., Bernard, S., & Robertson, L. (2012). An algorithm for detecting trophic status (chlorophyll-a), cyanobacterial-dominance, surface scums and floating vegetation in inland and coastal waters. Remote Sensing of Environment, 124, 637–652.  https://doi.org/10.1016/j.rse.2012.05.032 CrossRefGoogle Scholar
  70. Mayo, M., Gitelson, A., Yacobi, Y. Z., & Ben-Avraham, Z. (1995). Chlorophyll distribution in Lake Kinneret determined from Landsat thematic mapper data. International Journal of Remote Sensing, 16(1), 175–182.  https://doi.org/10.1080/01431169508954386 CrossRefGoogle Scholar
  71. McCullough, I. M., Loftin, C. S., & Sader, S. A. (2012). Combining lake and watershed characteristics with Landsat TM data for remote estimation of regional lake clarity. Remote Sensing of Environment, 123, 109–115.  https://doi.org/10.1016/j.rse.2012.03.006 CrossRefGoogle Scholar
  72. Ministry of Environment (2011). State and Trends of the Lebanese Environment. (3 ed., pp. 355). Beirut, Lebanon.Google Scholar
  73. Moses, W. J., Gitelson, A. A., Perk, R. L., Gurlin, D., Rundquist, D. C., Leavitt, B. C., et al. (2012). Estimation of chlorophyll-a concentration in turbid productive waters using airborn hyperspectral data. Water Research, 46(4), 993–1004.CrossRefGoogle Scholar
  74. Nazeer, M., Nichol, J. E., & Yung, Y. K. (2014). Evaluation of atmospheric correction models and Landsat surface reflectance product in an urban coastal environment. Internaltional Journal of Remote Sensing, 35(16), 6271–6291.CrossRefGoogle Scholar
  75. Nellis, M. D., Harrington, J. A., & Wu, J. (1998). Remote sensing of temporal and spatial variations in pool size, suspended sediment, turbidity, and Secchi depth in Tuttle Creek Reservoir, Kansas: 1993. Geomorphology, 21(3), 281–293.CrossRefGoogle Scholar
  76. Odermatt, D., Gitelson, A., Brando, V. E., & Schaepman, M. (2012). Review of constituent retrieval in optically deep and complex waters from satellite imagery. Remote Sensing of Environment, 118, 116–126.  https://doi.org/10.1016/j.rse.2011.11.013 CrossRefGoogle Scholar
  77. Olmanson, L. G., Bauer, M. E., & Brezonik, P. L. (2008). A 20-year Landsat water clarity census of Minnesota’s 10,000 lakes. Remote Sensing of Environment, 112(11), 4086–4097.  https://doi.org/10.1016/j.rse.2007.12.013 CrossRefGoogle Scholar
  78. Olmanson, L. G., Brezonik, P. L., & Bauer, M. E. (2011). Evaluation of medium to low resolution satellite imagery for regional lake water quality assessments. Water Resources Research, 47, 1–14.CrossRefGoogle Scholar
  79. Olmanson, L. G., Brezonik, P. L., & Bauer, M. E. (2013). Airborne hyperspectral remote sensing to assess spatial distribution of water quality characteristics in large rivers: The Mississippi River and its tributaries in Minnesota. Remote Sensing of Environment, 130, 254–265.CrossRefGoogle Scholar
  80. Olmanson, L.G., Brezonik, P.L., Bauer, M.E. (2015). Remote Sensing for Regional Lake Water Quality Assessment: Capabilities and Limitations of Current and Upcoming Satellite Systems, in: Younos, T. and Parece, T.E. (Eds.), Advances in Watershed Science and Assessment. Springer International Publishing, pp. 111–140.Google Scholar
  81. Olmanson, L. G., Brezonik, P. L., Finlay, J. C., & Bauer, M. E. (2016). Comparison of Landsat 8 and Landsat 7 for regional measurements of CDOM and water clarity in lakes. Remote Sensing of Environment, 185, 119–128.  https://doi.org/10.1016/j.rse.2016.01.007 CrossRefGoogle Scholar
  82. Onderka, M., & Pekárová, P. (2008). Retrieval of suspended particulate matter concentrations in the Danube River from Landsat ETM data. Science of the Total Environment, 397(1), 238–243.CrossRefGoogle Scholar
  83. O'Reilly, J. E., Maritorena, S., Mitchell, B. G., Siegel, D. A., Carder, K. L., Graver, S. A., et al. (1998). Ocean color chlorophyll algorithms for SeaWiFS. Journal of Geophysical Research, 103, 24937–24953.CrossRefGoogle Scholar
  84. O'Reilly, J. E., Maritorena, S., Siegel, D. A., O'Brien, M. C., Toole, D., Mitchell, B. G., et al. (2001). Ocean color chlorophyll a algorithms for SeaWiFS, OC2, and OC4: Version 4. Volume 11. Greenbelt, Maryland.Google Scholar
  85. Pahlevan, N., Lee, Z., Wei, J., Schlaaf, C. B., Schott, J. R., & Berk, A. (2014). On-orbit radiometric characterization of OLI (Landsat-8) for applications in aquatic remote sensing. Remote Sensing of Environment, 154, 272–284.  https://doi.org/10.1016/j.rse.2014.08.001 CrossRefGoogle Scholar
  86. R Core Team. (2015). R: A Language and Environment for Statistical Computing. In R. D. C. Team (Ed.), R Foundation for Statistical Computing. R Foundation for Statistical Computing: Vienna, Austria.Google Scholar
  87. Ritchie, J. C., Cooper, C. M., & Yongqing, J. (1987). Using Landsat multispectral scanner data to estimate suspended sediments in Moon Lake, Mississippi. Remote Sensing of Environment, 23(1), 65–81.CrossRefGoogle Scholar
  88. Ritchie, J. C., Cooper, C. M., & Schiebe, F. R. (1990). The relationship of MSS and TM digital data with suspended sediments , chlorophyll , and temperature in Moon Lake , Mississippi. Remote Sensing of Environment, 33(2), 137–148.  https://doi.org/10.1016/0034-4257(90)90039-O CrossRefGoogle Scholar
  89. Roy, D. P., Kovalskyy, V., Zhang, H. K., Vermote, E. F., Yan, L., Kumar, S. S., & Egorov, A. (2016). Characterization of Landsat-7 to Landsat-8 reflective wavelength and normalized difference vegetation index continuity. Remote Sensing of Environment, 185, 57–70.  https://doi.org/10.1016/j.rse.2015.12.024 CrossRefGoogle Scholar
  90. Salama, M. S., Radwan, M., & van der Velde, R. (2012). A hydro-optical model for deriving water quality variables from satellite images (HydroSat): A case study of the Nile River demonstrating the future Sentinel-2 capabilities. Physics and Chemistry of the Earth, 50-52, 224–232.  https://doi.org/10.1016/j.pce.2012.08.013.CrossRefGoogle Scholar
  91. Sass, G. Z., Creed, I. F., Bayley, S. E., & Devito, K. J. (2007). Understanding variation in trophic status of lakes on the Boreal Plain: a 20 year retrospective using Landsat TM imagery. Remote Sensing of Environment, 109(2), 127–141.  https://doi.org/10.1016/j.rse.2006.12.010 CrossRefGoogle Scholar
  92. Sawaya, K., Olmanson, L. G., Heinert, N. J., Brezonik, P. I., & Bauer, M. E. (2003). Extending satellite remote sensing to local scales: land and water resource monitoring using high-resolution imagery. Remote Sensing of Environment, 88(1-2), 144–156.  https://doi.org/10.1016/j.rse.2003.04.006 CrossRefGoogle Scholar
  93. Sendra, V., Camacho, F., Sanchez, J., Jimenez-Munoz, J. C., & Garcia-Hara, F. J. Metodo para la correccion atmosferica de imagenes Landsat (2015). In J. Mª Bustamante Díaz, R. Díaz-Delgado, D. Aragonés Borrego, I. Afán Asencio, & D. García (Eds.), XVI Congreso de la Asociación Española de Teledetección, Seville, Spain, 21–23 October, 2015: Teledetección: Humedales y Espacios ProtegidosGoogle Scholar
  94. Serwan, M., & Baban, J. (1993). Detecting water quality parameters in the Norfolk broads, U.K., using Landsat imagery. International Journal of Remote Sensing, 14, 1247–1267.CrossRefGoogle Scholar
  95. Shaban, A., & Nassif, N. (2007). Pollution in Qaraoun Lake, Central Lebanon. Journal of Environmental Hydrology, 15, 1–14.Google Scholar
  96. Shafique, N. A., Fulk, F., Autrey, B. C., & Flotemersch, J. (2003). Hyperspectral remote sensing of water quality parameters for large rivers in the Ohio River basin (pp. 216–221). Benson, Arizona: In the Proceedings of the First Interagency Conference on Research in the Watersheds. USDA-ARS.Google Scholar
  97. Slim, K., Atoui, A., Elzein, G., & Temsah, M. (2012). Effets des facteurs environnementaux sur la qualite de l'eau et la proliferation toxique des cyanobacteries du Lac Karaoun (Liban). Larhyss Journal, 10, 29–43.Google Scholar
  98. Stumpf, R. P., Davis, T. W., Wynne, T. T., Graham, J. L., Loftin, K. A., Johengen, T. H., et al. (2016). Challenges for mapping cyanotoxin patterns from remote sensing of cyanobacteria. Harmful Algae, 54, 160–173.  https://doi.org/10.1016/j.hal.2016.01.005.CrossRefGoogle Scholar
  99. Sun, D., Hu, C., Qiu, Z., & Shi, K. (2015). Estimating phycocyanin pigment concentration in productive inland waters using Landsat measurements: a case study in Lake Dianchi. Optics Express, 23(3), 3055–3074.  https://doi.org/10.1364/OE.23.003055 CrossRefGoogle Scholar
  100. Svab, E., Tyler, A. N., Preston, T., Presing, M., & Balogh, K. V. (2005). Characterizing the spectral reflectance of algae in lake waters with high suspended sediment concentrations. International Journal of Remote Sensing, 26(5), 919–928.CrossRefGoogle Scholar
  101. Tebbs, E. J., Remedios, J. J., & Harper, D. M. (2013). Remote sensing of chlorophyll-a as a measure of cyanobacterial biomass in Lake Bogoria, a hypertrophic, saline–alkaline, flamingo lake, using Landsat ETM+. Remote Sensing of Environment, 135, 92–106.  https://doi.org/10.1016/j.rse.2013.03.024 CrossRefGoogle Scholar
  102. Teillet, P. M., Barker, J. L., Markham, B. L., Irish, R. R., Fedosejevs, G., & Storey, J. C. (2001). Radiometric cross-calibration of the Landsat-7 ETM + and Landsat-5 TM sensors based on tandem data sets. NASA Publications, Paper 13.Google Scholar
  103. Tibshirani, R., & Leisch, F. (2015). bootstrap: Functions for the Book "An Introduction to the Bootstrap". In R Core Team (Ed.), (R package version 2015.2 ed.): R.Google Scholar
  104. Torbick, N., Hu, F., Zhang, J., Qi, J., Zhang, H., & Becker, B. (2008). Mapping Chlorophyll- a Concentrations in West Lake , China using Landsat 7 ETM+. Journal of Great Lakes Research, 34(3), 559–565.CrossRefGoogle Scholar
  105. Tyler, A. N., Svab, E., Preston, T., Présing, M., & Kovács, W. A. (2006). Remote sensing of the water quality of shallow lakes: A mixture modelling approach to quantifying phytoplankton in water characterized by high-suspended sediment. International Journal of Remote Sensing, 27(8), 1521–1537.  https://doi.org/10.1080/01431160500419311 CrossRefGoogle Scholar
  106. Vermote, E., Justice, C., Claverie, M., & Franch, B. (2016). Preliminary analysis of the performance of the Landsat 8 land surface reflectance product. Remote Sensing of Environment, 185, 46–56.  https://doi.org/10.1016/j.rse.2016.04.008 CrossRefGoogle Scholar
  107. Vuolo, F., Mattiuzzi, M., & Atzberger, C. (2015). Comparison of the Landsat Surface Reflectance Climate Data Record (CDR) and manually atmospherically corrected data in a semi-arid European study area. International Journal of Applied Earth Observation and Geoinformation, 42, 1–10.CrossRefGoogle Scholar
  108. Woodcock, C. E., Andserson, M., Belward, A., Bindschadler, R., Cohen, W., Gao, F., Goward, S. N., Helder, D., Helmer, E., Nemani, R., Oreopoulos, L., Schott, J., Thenkabail, P. S., Vermote, E. F., Vogelmann, J., Wulder, M. A., & Wynne, R. (2008). Free access to Landsat imagery. Science, 320(5879), 1011–1101.  https://doi.org/10.1126/science.320.5879.1011a.CrossRefGoogle Scholar
  109. Wulder, M. A., Masek, J. G., Cohen, W. B., Loveland, T. R., & Woodcock, C. E. (2012). Opening the archive: how free data has enabled the science and monitoring promise of Landsat. Remote Sensing of Environment, 122, 2–10.  https://doi.org/10.1016/j.rse.2012.01.010 CrossRefGoogle Scholar
  110. Yacobi, Y. Z., Gitelson, A., & Mayo, M. (1995). Remote sensing of chlorophyll in Lake Kinneret using highspectral-resolution radiometer and Landsat TM: spectral features of reflectance and algorithm development. Journal of Plankton Research, 17(11), 2155–2173.  https://doi.org/10.1093/plankt/17.11.2155 CrossRefGoogle Scholar
  111. Zhou, Z., & Zhao, Y. (2011). Research on the Water Quality Monitoring System for Inland Lakes based on Remote Sensing. Procedia Environmental Sciences, 10, 1707–1711.CrossRefGoogle Scholar
  112. Zhu, Z., Fu, Y., Woodcock, C. E., Olofsson, P., Vogelmann, J. E., Holden, C. E., Wang, M., Dai, S., & Yu, Y. (2016). Including land cover change in analysis of greenness trends using all available Landsat 5, 7, and 8 images: a case study from Guangzhou, China (2000-2014). Remote Sensing of Environment, 185, 243–257.  https://doi.org/10.1016/j.rse.2016.03.036 CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of Civil and Environmental EngineeringAmerican University of BeirutBeirutLebanon

Personalised recommendations