Skip to main content

Advertisement

Log in

Microfluidic quantification of multiple enteric and opportunistic bacterial pathogens in roof-harvested rainwater tank samples

  • Published:
Environmental Monitoring and Assessment Aims and scope Submit manuscript

Abstract

Potable and non-potable uses of roof-harvested rainwater (RHRW) are increasing due to water shortages. To protect human health risks, it is important to identify and quantify disease-causing pathogens in RHRW so that appropriate treatment options can be implemented. We used a microfluidic quantitative PCR (MFQPCR) system for the quantitative detection of a wide array of fecal indicator bacteria (FIB) and pathogens in RHRW tank samples along with culturable FIB and conventional qPCR analysis of selected pathogens. Among the nine pathogenic bacteria and their associated genes tested with the MFQPCR, 4.86 and 2.77% samples were positive for Legionella pneumophila and Shigella spp., respectively. The remaining seven pathogens were absent. MFQPCR and conventional qPCR results showed good agreement. Therefore, direct pathogen quantification by MFQPCR systems may be advantageous for circumstances where a thorough microbial analysis is required to assess the public health risks from multiple pathogens that occur simultaneously in the target water source.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+
from $39.99 /Month
  • Starting from 10 chapters or articles per month
  • Access and download chapters and articles from more than 300k books and 2,500 journals
  • Cancel anytime
View plans

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

Explore related subjects

Discover the latest articles and news from researchers in related subjects, suggested using machine learning.

References

  • Ahmed, W., Huygens, F., Goonetilleke, A., & Gardner, T. (2008). Real-time PCR detection of pathogenic microorganisms in roof-harvested rainwater in Southeast Queensland, Australia. Applied and Environmental Microbiology, 74(17), 5490–5496. https://doi.org/10.1128/AEM.00331-08

    Article  CAS  Google Scholar 

  • Ahmed, W., Goonetilleke, A., & Gardner, T. (2010a). Implications of fecal indicator bacteria for the microbiological assessment of roof-harvested rainwater quality in Southeast Queensland, Australia. Canadian Journal of Microbiology, 56(6), 471–479. https://doi.org/10.1139/W10-037

    Article  CAS  Google Scholar 

  • Ahmed, W., Vieritz, A., Goonetilleke, A., & Gardner, T. (2010b). Health risk from the use of roof-harvested rainwater in Southeast Queensland, Australia, as potable or nonpotable water, determined using quantitative microbial risk assessment. Applied and Environmental Microbiology, 76(22), 7382–7391. https://doi.org/10.1128/AEM.00944-10

    Article  CAS  Google Scholar 

  • Ahmed, W., Gardner, T., & Toze, S. (2011). Microbiological quality of roof-harvested rainwater and health risks: a review. Journal of Environmental Quality, 40(1), 13–21. https://doi.org/10.2134/jeq2010.0345

    Article  CAS  Google Scholar 

  • Ahmed, W., Hodgers, L., Sidhu, J. P. S., & Toze, S. (2012). Fecal indicators and zoonotic pathogens in household drinking water taps fed from rainwater tanks in Southeast Queensland, Australia. Applied and Environmental Microbiology, 78(1), 219–226. https://doi.org/10.1128/AEM.06554-11

    Article  CAS  Google Scholar 

  • Ahmed, W., Brandes, H., Gyawali, P., Sidhu, J. P. S., & Toze, S. (2014). Opportunistic pathogens in roof-captured rainwater samples, determined using quantitative PCR. Water Research, 53, 361–369. https://doi.org/10.1016/j.watres.2013.12.021

    Article  CAS  Google Scholar 

  • Ahmed, W., Hamilton, K. A., Gyawali, P., Toze, S., & Haas, C. N. (2016). Evidence of avian and possum fecal contamination in rainwater tanks as determined by microbial source tracking approaches. Applied and Environmental Microbiology, 82(14), 4379–4386. https://doi.org/10.1128/AEM.00892-16

    Article  CAS  Google Scholar 

  • Ahmed, W., Staley, C., Hamilton, K. A., Beale, D. J., Sadowsky, M. J., Toze, S., & Haas, C. N. (2017). Amplicon-based taxonomic characterization of bacteria in urban and peri-urban roof-harvested rainwater stored in tanks. Science of the Total Environment, 576, 326–334. https://doi.org/10.1016/j.scitotenv.2016.10.090

    Article  CAS  Google Scholar 

  • Albrechtsen, H.-J. (2002). Microbiological investigations of rainwater and graywater collected for toilet flushing. Water Science and Technology, 46(6–7), 311–316.

    CAS  Google Scholar 

  • Broadhead, A. N., Negron-Alvira, A., Baez, L. A., Hazen, T. C., & Canoy, M. (1988). Occurrence of Legionella species in tropical rain water cisterns. Carribean Journal of Science, 24(1), 71–73.

    Google Scholar 

  • Crabtree, K. D., Ruskin, R. H., Shaw, S. B., & Rose, J. B. (1996). The detection of Cryptosporidium oocysts and Giardia cysts in cistern water in the U.S. Virgin Islands. Water Research, 30(1), 208–216. https://doi.org/10.1016/0043-1354(95)00100-Y

    Article  CAS  Google Scholar 

  • Crockett, C., Haas, C. N., Fazil, A., Rose, J. B., & Gerba, C. P. (1996). Prevalence of Shigellosis in the U.S.: Consistency with dose-response information. International Journal of Food Microbiology, 30(1–2), 87–100. https://doi.org/10.1016/0168-1605(96)00993-2

    Article  CAS  Google Scholar 

  • Daoud, A. K., Swaileh, K. M., & Hussein, R.M.,& Matani, M. (2011). Quality assessment of roof-harvested rainwater in the West Bank, Palestinian Authority. Journal of Water and Health, 9(3), 525–533. https://doi.org/10.2166/wh.2011.148

  • Dobrowsky, P. H., Kwaadsteniet, M. D., Cloete, T. E., & Khan, W. (2014). Distribution of indigenous bacterial pathogens and potential pathogens associated with roof-harvested rainwater. Applied and Environmental Microbiology, 80(7), 2307–2316. https://doi.org/10.1128/AEM.04130-13

    Article  CAS  Google Scholar 

  • DuPont, H. L. (1988). Shigella. Infectious Disease Clinics of North America, 2(3), 599–605.

    CAS  Google Scholar 

  • Hamilton, K. A., Ahmed, W., Palmer, A., Sidhu, J. P. S., Hodgers, L., Toze, S., & Haas, C. N. (2016). Public health implications of Acanthamoeba and multiple potential opportunistic pathogens in roof-harvested rainwater tanks. Environmetal Research, 150, 320–327. https://doi.org/10.1016/j.envres.2016.06.017

    Article  CAS  Google Scholar 

  • Hamilton, K. A., Ahmed, W., Palmer, A., Smith, K., Toze, S., & Haas, C. N. (2017). Seasonal assessment of opportunistic premise plumbing pathogens in roof-harvested rainwater tanks. Environmental Science & Technology, 51(3), 1742–1753. https://doi.org/10.1021/acs.est.6b04814

    Article  CAS  Google Scholar 

  • Haugland, R. A., Siefring, S. C., Wymer, L. J., Brenner, K. P., & Dufour, A. P. (2005). Comparison of Enterococcus measurements in freshwater at two recreational beaches by quantitative polymerase chain reaction and membrane filter culture analysis. Water Research, 39(4), 559–568. https://doi.org/10.1016/j.watres.2004.11.011

    Article  CAS  Google Scholar 

  • Hill, V. R., Polaczyk, A. L., Hahn, D., Narayanan, J., Cromeans, T. L., Roberts, J. M., & Amburgey, J. E. (2005). Development of a rapid method for simultaneous recovery of diverse microbes in drinking water by ultrafiltration with sodium polyphosphate and surfactants. Applied and Environmental Microbiology, 71(11), 6878–6884. https://doi.org/10.1128/AEM.71.11.6878-6884.2005

    Article  CAS  Google Scholar 

  • Ibekwe, A. M., Watt, P. M., Grieve, C. M., Sharma, V. K., & Lyons, S. R. (2002). Multiplex fluorogenic real-time PCR for detection and quantification of Escherichia coli O157:H7 in dairy wastewater wetlands. Applied and Environmental Microbiology, 68(10), 4853–4862. https://doi.org/10.1128/AEM.68.10.4853-4862.2002

    Article  CAS  Google Scholar 

  • Ishii, S., & Sadowsky, M. J. (2008). Escherichia coli in the environment: implications for water quality and human health. Microbes and Environments, 23(2), 101–108. https://doi.org/10.1264/jsme2.23.101

    Article  Google Scholar 

  • Ishii, S., Segawa, T., & Okabe, S. (2013). Simultaneous quantification of multiple food- and waterborne pathogens by use of microfluidic quantitative PCR. Applied and Environmental Microbiology, 79(9), 2891–2898. https://doi.org/10.1128/AEM.00205-13

    Article  CAS  Google Scholar 

  • Ishii, S., Nakamura, T., Ozawa, S., Kobayashi, A., Sano, D., & Okabe, S. (2014a). Water quality monitoring and risk assessment by simultaneous multipathogen quantification. Environmental Science & Technology, 48(9), 4744–4749. https://doi.org/10.1021/es500578s

    Article  CAS  Google Scholar 

  • Ishii, S., Kitamura, G., Segawa, T., Kobayashi, A., Miura, T., Sano, D., & Okabe, S. (2014b). Microfluidic quantitative PCR for simultaneous quantification of multiple viruses in environmental water samples. Applied and Environmental Microbiology, 80(24), 7505–7511. https://doi.org/10.1128/AEM.02578-14

    Article  Google Scholar 

  • Islam, M. A., Sakakibara, H., Karim, M. R., Sekine, M., & Mahmud, Z. H. (2011). Bacteriological assessment of drinking water supply options in coastal areas of Bangladesh. Journal of Water and Health, 9(2), 415–428. https://doi.org/10.2166/wh.2011.114

    Article  CAS  Google Scholar 

  • Jang, J., Hur, H.G., Sadowsky, M.J., Byappanahalli, M.N., Yan, T., & Ishii, S. (2017). Environmental Escherichia coli: ecology and public health implications—a review. Journal of Applied Microbiology 123(3), 570–581. https://doi.org/10.1111/jam.13468

    Article  CAS  Google Scholar 

  • Kaushik, R., Balasubramanian, R., & de La Cruz, A. A. (2012). Influence of air quality on the composition of microbial pathogens in fresh rainwater. Applied and Environmental Microbiology, 78(8), 2813–2818. https://doi.org/10.1128/AEM.07695-11

    Article  CAS  Google Scholar 

  • LaGier, M. J., Joseph, L. A., Passaretti, T. V., Musser, K. A., & Cirino, N. M. (2004). A real-time multiplexed PCR assay for rapid detection and differentiation of Campylobacter jejuni and Campylobacter coli. Molecular and Cellular Probes, 18(4), 275–282. https://doi.org/10.1016/j.mcp.2004.04.002

    Article  CAS  Google Scholar 

  • NHMRC–NRMMC. (2004). Australian drinking water guidelines. Canberra: National Health and Medical Research Council and Natural Resource Management Ministerial Council.

    Google Scholar 

  • Quijada, N. M., Fongaro, G., Barardi, C. R. M., Hernandez, M., & Rodriguez-Lazaro, D. (2016). Propidium monoazide integrated with qPCR enables the detection and enumeration of infectious enteric RNA and DNA viruses in clam and fermented sausages. Frontiers in Microbiol, 7, 2008.

    Article  Google Scholar 

  • Schoen, M. E., Ashbolt, N. J., Jahne, M. A., & Garland, J. (2017). Risk-based enteric pathogen reduction targets for non-potable and direct potable use of roof runoff, stormwater, and greywater. Microbial Risk Analysis, 5, 32–43. https://doi.org/10.1016/j.mran.2017.01.002

    Article  Google Scholar 

  • Simmons, G., Hope, V., Lewis, G., Whitmore, J., & Gao, J. (2001). Contamination of potable roof-collected rainwater in Auckland, New Zealand. Water Research, 35(6), 1518–1524. https://doi.org/10.1016/S0043-1354(00)00420-6

    Article  CAS  Google Scholar 

  • Spurgeon, S. L., Jones, R. C., & Ramakrishnan, R. (2008). High throughput gene expression measurement with real time PCR in a microfluidic dynamic array. PLoS One, 3(2), e1662. https://doi.org/10.1371/journal.pone.0001662

    Article  Google Scholar 

  • Staley, C., Gordon, K. V., Schoen, M. E., & Harwood, V. J. (2012). Performance of two quantitative methods for microbial source tracking of human sewage and implications for microbial risk assessment in recreational waters. Applied and Environmental Microbiology, 78(20), 7317–7326. https://doi.org/10.1128/AEM.01430-12

    Article  CAS  Google Scholar 

  • Uba, B. N., & Aghogho, O. (2000). Rainwater quality from different roof catchments in the Port Harcourt District, Rivers State, Nigeria. Journal of Water Supply Research Technology-AQUA, 49(5), 281–288.

    CAS  Google Scholar 

  • Waso, M., Dobrowsky, P. H., Hamilton, K. A., Puzon, G., Miller, H., Khan, W., & Ahmed, W. (2017). Abundance of Naegleria fowleri in roof-harvested rainwater tank samples from two continents. Environmental Science and Pollution Research. https://doi.org/10.1007/s11356-017-0870-9

  • WHO. (2004). Guidelines for drinking water quality (3rd ed.). Geneva: World Health Organization.

    Google Scholar 

  • Zhang, Q., Eichmiller, J. J., Staley, C., Sadowsky, M. J., & Ishii, S. (2016). Correlations between pathogen concentration and fecal indicator marker genes in beach environments. Science of the Total Environment, 573, 826–830. https://doi.org/10.1016/j.scitotenv.2016.08.122

    Article  CAS  Google Scholar 

  • Zhang, Q. & Ishii, S. (2017). Improved simultaneous quantification of multiple waterborne pathogens and fecal indicator bacteria in environmental water samples by using a sample process control. Chapel Hill: International Symposium on Health-Related Water Microbiology.

    Google Scholar 

Download references

Acknowledgements

This research was supported by the Julius Career Award. We thank the tank owners for providing access to their properties for collecting tank water samples.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Warish Ahmed.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ahmed, W., Zhang, Q., Ishii, S. et al. Microfluidic quantification of multiple enteric and opportunistic bacterial pathogens in roof-harvested rainwater tank samples. Environ Monit Assess 190, 105 (2018). https://doi.org/10.1007/s10661-018-6482-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10661-018-6482-0

Keywords