Skip to main content

Advertisement

Log in

Broad-spectrum resistance of Pseudomonas aeruginosa from shellfish: infrequent acquisition of novel resistance mechanisms

  • Published:
Environmental Monitoring and Assessment Aims and scope Submit manuscript

Abstract

Pseudomonas aeruginosa is one the most common multidrug-resistant pathogens worldwide. It has been previously detected in marine shellfish, but its antibiotic resistance in such environment has not been explored. By combining PCR detection of acquired genes, and resistance-nodulation-cell division (RND) efflux studying, we investigated the multifactorial resistance traits of 108 P. aeruginosa isolates recovered from wild-growing Mediterranean mussels (Mytilus galloprovincialis) in Croatia. Eleven different resistance profiles were found, with the main mechanism being the overexpression of intrinsic efflux pump(s), particularly MexAB-OprM. Several acquired resistance determinants were detected, including the β-lactamase gene blaTEM-116, sulfamethoxazole resistance gene sul1, and the class 1 integron gene cassette carrying the streptomycin resistance gene aadA7. This study evidenced the multiple resistance in P. aeruginosa in shellfish from human-impacted marine environment, pointing to the underestimated role of the marine habitat for maintenance of multiresistant P. aeruginosa and, consequently, the potential risk for human and environmental health.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Adabi, M., Talebi-Taher, M., Arbabi, L., Afshar, M., Fathizadeh, S., Minaeian, S., Moghadam-Maragheh, N., & Majidpour, A. (2015). Spread of efflux pump overexpressing-mediated fluoroquinolone resistance and multidrug resistance in Pseudomonas aeruginosa by using an efflux pump inhibitor. Infection & Chemotherapy, 47(2), 98–104. https://doi.org/10.3947/ic.2015.47.2.98

    Article  Google Scholar 

  • Aggarwal, R., Chaudhary, U., & Bala, K. (2008). Detection of extended-spectrum β-lactamase in Pseudomonas aeruginosa. Indian Journal of Pathology and Microbiology, 51(2), 222–224. https://doi.org/10.4103/0377-4929.41693

    Article  Google Scholar 

  • Ahmed, A. M., Nakagawa, T., Arakawa, E., Ramamurthy, T., Shinoda, S., & Shimamoto, T. (2004). New aminoglycoside acetyltransferase gene, aac (3)-Id, in a class 1 integron from a multiresistant strain of Vibrio fluvialis isolated from an infant aged 6 months. Journal of Antimicrobial Chemotherapy, 53(6), 947–951. https://doi.org/10.1093/jac/dkh221

    Article  CAS  Google Scholar 

  • Al-Jebouri, M. M., & Trollope, D. R. (1984). Indicator bacteria in freshwater and marine molluscs. Hydrobiologia, 111(2), 93–102. https://doi.org/10.1007/BF00008620

    Article  Google Scholar 

  • Allydice-Francis, K., & Brown, P. D. (2012). Diversity of antimicrobial resistance and virulence determinants in Pseudomonas aeruginosa associated with fresh vegetables. International Journal of Microbiology, 2012, 1–7. https://doi.org/10.1155/2012/426241

    Article  Google Scholar 

  • Alouache, S., Kada, M., Messai, Y., Estepa, V., Torres, C., & Bakour, R. (2012). Antibiotic resistance and extended-spectrum β-lactamases in isolated bacteria from seawater of Algiers beaches (Algeria). Microbes and Environments, 27(1), 80–86. https://doi.org/10.1264/jsme2.ME11266

    Article  Google Scholar 

  • Boucher, H. W., Talbot, G. H., Bradley, J. S., Edwards, J. E., Gilbert, D., Rice, L. B., Scheld, M., Spellberg, B., & Bartlett, J. (2009). Bad bugs, no drugs: no ESKAPE! An update from the Infectious Diseases Society of America. Clinical Infectious Diseases, 48(1), 1–12. https://doi.org/10.1086/595011

    Article  Google Scholar 

  • Breidenstein, E. B., de la Fuente-Núñez, C., & Hancock, R. E. (2011). Pseudomonas aeruginosa: all roads lead to resistance. Trends in Microbiology, 19(8), 419–426. https://doi.org/10.1016/j.tim.2011.04.005

    Article  CAS  Google Scholar 

  • Castanheira, M., Mills, J. C., Farrell, D. J., & Jones, R. N. (2014). Mutation-driven β-lactam resistance mechanisms among contemporary ceftazidime-nonsusceptible Pseudomonas aeruginosa isolates from US hospitals. Antimicrobial Agents and Chemotherapy, 58(11), 6844–6850. https://doi.org/10.1128/AAC.03681-14

    Article  Google Scholar 

  • Clinical and Laboratory Standards Institute (CLSI). (2012). Performance standard for antimicrobial susceptibility testing—approved standard M100–S22. Wayne: CLSI.

    Google Scholar 

  • De Donno, A., Liaci, D., Bagordo, F., Lugoli, F., & Gabutti, G. (2008). Mytilus galloprovincialis as a bioindicator of microbiological pollution of coastal waters: a study conducted in the Salento Peninsula (Italy). Journal of Coastal Research, 24(sp1), 216–221. https://doi.org/10.2112/05-0463.1

  • Denis, F. A. (1975). Contamination of shellfish with strains of Pseudomonas aeruginosa and specific bacteriophages. Canadian Journal of Microbiology, 21(7), 1055–1057. https://doi.org/10.1139/m75-156

    Article  CAS  Google Scholar 

  • Dubois, V., Arpin, C., Melon, M., Melon, B., Andre, C., Frigo, C., & Quentin, C. (2001). Nosocomial outbreak due to a multiresistant strain of Pseudomonas aeruginosa P12: efficacy of cefepime-amikacin therapy and analysis of β-lactam resistance. Journal of Clinical Microbiology, 39(6), 2072–2078. https://doi.org/10.1128/JCM.39.6.2072-2078.2001

    Article  CAS  Google Scholar 

  • Estepa, V., Rojo-Bezares, B., Torres, C., & Sáenz, Y. (2015). Genetic lineages and antimicrobial resistance in Pseudomonas spp. isolates recovered from food samples. Foodborne Pathogens and Disease, 12(6), 486–491. https://doi.org/10.1089/fpd.2014.1928

    Article  CAS  Google Scholar 

  • Gačić, M., Poulain, P.-M., Zore-Armanda, M., & Barale, V. (2001). Overview. In B. Cushman-Roisin, M. Gačić, P. M. Poulain, & H. Artegiani (Eds.), Physical oceanography of the Adriatic Sea. Past, present and future (pp. 1–44). Dordrecht: Kluwer Academic Publishers.

    Google Scholar 

  • Gillings, M. R. (2014). Integrons: past, present, and future. Microbiology and Molecular Biology Reviews, 78(2), 257–277. https://doi.org/10.1128/MMBR.00056-13

    Article  Google Scholar 

  • Girlich, D., Poirel, L., & Nordmann, P. (2011). Diversity of clavulanic acid-inhibited extended-spectrum β-lactamases in Aeromonas spp. from the Seine River, Paris, France. Antimicrobial Agents and Chemotherapy, 55(3), 1256–1261. https://doi.org/10.1128/AAC.00921-10

    Article  CAS  Google Scholar 

  • Hocquet, D., Roussel-Delvallez, M., Cavallo, J. D., & Plésiat, P. (2007). MexAB-OprM-and MexXY-overproducing mutants are very prevalent among clinical strains of Pseudomonas aeruginosa with reduced susceptibility to ticarcillin. Antimicrobial Agents and Chemotherapy, 51(4), 1582–1583. https://doi.org/10.1128/AAC.01334-06

    Article  CAS  Google Scholar 

  • Hu, L. F., Chang, X., Ye, Y., Wang, Z. X., Shao, Y. B., Shi, W., Li, X., & Li, J. B. (2011). Stenotrophomonas maltophilia resistance to trimethoprim/sulfamethoxazole mediated by acquisition of sul and dfrA genes in a plasmid-mediated class 1 integron. International Journal of Antimicrobial Agents, 37(3), 230–234. https://doi.org/10.1016/j.ijantimicag.2010.10.025

    Article  CAS  Google Scholar 

  • Köhler, T., Kok, M., Michea-Hamzehpour, M., Plesiat, P., Gotoh, N., Nishino, T., Curty, L. K., & Pechere, J. C. (1996). Multidrug efflux in intrinsic resistance to trimethoprim and sulfamethoxazole in Pseudomonas aeruginosa. Antimicrobial Agents and Chemotherapy, 40(10), 2288–2290.

    Google Scholar 

  • Liaw, S. J., Lee, Y. L., & Hsueh, P. R. (2010). Multidrug resistance in clinical isolates of Stenotrophomonas maltophilia: roles of integrons, efflux pumps, phosphoglucomutase (SpgM), and melanin and biofilm formation. International Journal of Antimicrobial Agents, 35(2), 126–130. https://doi.org/10.1016/j.ijantimicag.2009.09.015

    Article  CAS  Google Scholar 

  • Lomovskaya, O., Warren, M. S., Lee, A., Galazzo, J., Fronko, R., Lee, M., ..., & Leger, R. (2001). Identification and characterization of inhibitors of multidrug resistance efflux pumps in Pseudomonas aeruginosa: novel agents for combination therapy. Antimicrobial Agents and Chemotherapy, 45(1), 105–116, DOI: https://doi.org/10.1128/AAC.45.1.105-116.2001.

  • Luczkiewicz, A., Kotlarska, E., Artichowicz, W., Tarasewicz, K., & Fudala-Ksiazek, S. (2015). Antimicrobial resistance of Pseudomonas spp. isolated from wastewater and wastewater-impacted marine coastal zone. Environmental Science and Pollution Research, 22(24), 19823–19834. https://doi.org/10.1007/s11356-015-5098-y

    Article  CAS  Google Scholar 

  • Maravić, A., Skočibušić, M., Šamanić, I., & Puizina, J. (2012a). Antibiotic susceptibility profiles and first report of TEM extended-spectrum β-lactamase in Pseudomonas fluorescens from coastal waters of the Kaštela Bay, Croatia. World Journal of Microbiology and Biotechnology, 28(5), 2039–2045. https://doi.org/10.1007/s11274-012-1006-5

    Article  Google Scholar 

  • Maravić, A., Skočibušić, M., Šprung, M., Šamanić, I., Puizina, J., & Pavela-Vrančić, M. (2012b). Occurrence and antibiotic susceptibility profiles of Burkholderia cepacia complex in coastal marine environment. International Journal of Environmental Health Research, 22(6), 531–542. https://doi.org/10.1080/09603123.2012.667797

    Article  Google Scholar 

  • Maravić, A., Skočibušić, M., Šamanić, I., Fredotović, Ž., Cvjetan, S., Jutronić, M., & Puizina, J. (2013). Aeromonas spp. simultaneously harbouring bla CTX-M-15, bla SHV-12, bla PER-1 and bla FOX-2, in wild-growing Mediterranean mussel (Mytilus galloprovincialis) from Adriatic Sea, Croatia. International Journal of Food Microbiology, 166(2), 301–308. https://doi.org/10.1016/j.ijfoodmicro.2013.07.010

    Article  Google Scholar 

  • Maravić, A., Skočibušić, M., Fredotović, Ž., Cvjetan, S., Šamanić, I., & Puizina, J. (2014). Characterization of environmental CTX-M-15-producing Stenotrophomonas maltophilia. Antimicrobial Agents and Chemotherapy, 58(10), 6333–6334. https://doi.org/10.1128/AAC.03601-14

    Article  Google Scholar 

  • Maravić, A., Skočibušić, M., Cvjetan, S., Šamanić, I., Fredotović, Ž., & Puizina, J. (2015). Prevalence and diversity of extended-spectrum-β-lactamase-producing Enterobacteriaceae from marine beach waters. Marine Pollution Bulletin, 90(1), 60–67. https://doi.org/10.1016/j.marpolbul.2014.11.021

    Article  Google Scholar 

  • Martins, M., Viveiros, M., Couto, I., Costa, S. S., Pacheco, T., Fanning, S., Pagès, J. M., & Amaral, L. (2011). Identification of efflux pump-mediated multidrug-resistant bacteria by the ethidium bromide-agar cartwheel method. In Vivo, 25(2), 171–178.

    CAS  Google Scholar 

  • Matyar, F., Akkan, T., Uçak, Y., & Eraslan, B. (2010). Aeromonas and Pseudomonas: antibiotic and heavy metal resistance species from Iskenderun Bay, Turkey (northeast Mediterranean Sea). Environmental Monitoring and Assessment, 167(1), 309–320. https://doi.org/10.1007/s10661-009-1051-1

    Article  CAS  Google Scholar 

  • Mena, K. D., & Gerba, C. P. (2009). Risk assessment of Pseudomonas aeruginosa in water. Reviews of Environmental Contamination and Toxicology, 201, 71–115. https://doi.org/10.1007/978-1-4419-0032-6_3

  • Mesaros, N., Glupczynski, Y., Avrain, L., Caceres, N. E., Tulkens, P. M., & Van Bambeke, F. (2007). A combined phenotypic and genotypic method for the detection of Mex efflux pumps in Pseudomonas aeruginosa. Journal of antimicrobial chemotherapy, 59(3), 378–386. https://doi.org/10.1093/jac/dkl504

  • Morrissey, I., Hackel, M., Badal, R., Bouchillon, S., Hawser, S., & Biedenbach, D. (2013). A review of ten years of the Study for Monitoring Antimicrobial Resistance Trends (SMART) from 2002 to 2011. Pharmaceuticals, 6(11), 1335–1346. https://doi.org/10.3390/ph6111335

    Article  Google Scholar 

  • Pitondo-Silva, A., Martins, V. V., Fernandes, A. F. T., & Stehling, E. G. (2014). High level of resistance to aztreonam and ticarcillin in Pseudomonas aeruginosa isolated from soil of different crops in Brazil. Science of the Total Environment, 473, 155–158. https://doi.org/10.1016/j.scitotenv.2013.12.021

  • Pitout, J. D., Gregson, D. B., Poirel, L., McClure, J. A., Le, P., & Church, D. L. (2005). Detection of Pseudomonas aeruginosa producing metallo-β-lactamases in a large centralized laboratory. Journal of Clinical Microbiology, 43(7), 3129–3135. https://doi.org/10.1128/JCM.43.7.3129-3135.2005

    Article  CAS  Google Scholar 

  • Ploy, M. C., Denis, F., Courvalin, P., & Lambert, T. (2000). Molecular characterization of integrons in Acinetobacter baumannii: description of a hybrid class 2 integron. Antimicrobial Agents and Chemotherapy, 44(10), 2684–2688. https://doi.org/10.1128/AAC.44.10.2684-2688.2000

    Article  CAS  Google Scholar 

  • Poole, K. (2011). Pseudomonas aeruginosa: resistance to the max. Frontiers in Microbiology, 2, 65. https://doi.org/10.3389/fmicb.2011.00065.

  • Poole, K., Krebes, K., McNally, C., & Neshat, S. H. A. D. I. (1993). Multiple antibiotic resistance in Pseudomonas aeruginosa: evidence for involvement of an efflux operon. Journal of Bacteriology, 175(22), 7363–7372. https://doi.org/10.1128/jb.175.22.7363-7372.1993

    Article  CAS  Google Scholar 

  • Potron, A., Poirel, L., & Nordmann, P. (2015). Emerging broad-spectrum resistance in Pseudomonas aeruginosa and Acinetobacter baumannii: mechanisms and epidemiology. International Journal of Antimicrobial Agents, 45(6), 568–585. https://doi.org/10.1016/j.ijantimicag.2015.03.001

    Article  CAS  Google Scholar 

  • Ruiz-Martínez, L., López-Jiménez, L., Fusté, E., Vinuesa, T., Martínez, J. P., & Viñas, M. (2011). Class 1 integrons in environmental and clinical isolates of Pseudomonas aeruginosa. International Journal of Antimicrobial Agents, 38(5), 398–402. https://doi.org/10.1016/j.ijantimicag.2011.06.016

    Article  Google Scholar 

  • Sader, H. S., Farrell, D. J., Flamm, R. K., & Jones, R. N. (2014). Antimicrobial susceptibility of Gram-negative organisms isolated from patients hospitalised with pneumonia in US and European hospitals: results from the SENTRY Antimicrobial Surveillance Program, 2009–2012. International Journal of Antimicrobial Agents, 43(4), 328–334. https://doi.org/10.1016/j.ijantimicag.2014.01.007

    Article  CAS  Google Scholar 

  • Santoro, D. O., Cardoso, A. M., Coutinho, F. H., Pinto, L. H., Vieira, R. P., Albano, R. M., & Clementino, M. M. (2015). Diversity and antibiotic resistance profiles of Pseudomonads from a hospital wastewater treatment plant. Journal of Applied Microbiology, 119(6), 1527–1540. https://doi.org/10.1111/jam.12936

    Article  CAS  Google Scholar 

  • Sköld, O. (2000). Sulfonamide resistance: mechanisms and trends. Drug Resistance Updates, 3(3), 155–160. https://doi.org/10.1054/drup.2000.0146

    Article  Google Scholar 

  • Streeter, K., & Katouli, M. (2016). Pseudomonas aeruginosa: a review of their pathogenesis and prevalence in clinical settings and the environment. Infection, Epidemiology and Medicine, 2(1), 25–32. https://doi.org/10.18869/modares.iem.2.1.25

    Article  Google Scholar 

  • Suzuki, Y., Kajii, S., Nishiyama, M., & Iguchi, A. (2013). Susceptibility of Pseudomonas aeruginosa isolates collected from river water in Japan to antipseudomonal agents. Science of the Total Environment, 450, 148–154. https://doi.org/10.1016/j.scitotenv.2013.02.011

  • Tambić-Andrašević, A., & Tambić, A. (2016). Antibiotic resistance in Croatia, 2015. The Croatian Academy of Medical Sciences, Zagreb, Croatia.

  • Upadhyay, S., Sen, M. R., & Bhattacharjee, A. (2010). Presence of different beta-lactamase classes among clinical isolates of Pseudomonas aeruginosa expressing AmpC beta-lactamase enzyme. The Journal of Infection in Developing Countries, 4(04), 239–242. https://doi.org/10.3855/jidc.497

  • Walsh, F., & Amyes, S. G. B. (2007). Carbapenem resistance in clinical isolates of Pseudomonas aeruginosa. Journal of Chemotherapy, 19(4), 376–381. https://doi.org/10.1179/joc.2007.19.4.376

    Article  CAS  Google Scholar 

  • Wolter, D. J., & Lister, P. D. (2013). Mechanisms of β-lactam resistance among Pseudomonas aeruginosa. Current Pharmaceutical Design, 19(2), 209–222. https://doi.org/10.2174/138161213804070311

    Article  CAS  Google Scholar 

Download references

Funding

This study was supported by the Ministry of Science, Education and Sports of the Republic of Croatia in the form of 1-year research fund to the Faculty of Science, University of Split, and the grants [177-1191196-0829 and 177-0000000-3182].

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ana Maravić.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Maravić, A., Šamanić, I., Šprung, M. et al. Broad-spectrum resistance of Pseudomonas aeruginosa from shellfish: infrequent acquisition of novel resistance mechanisms. Environ Monit Assess 190, 81 (2018). https://doi.org/10.1007/s10661-018-6471-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10661-018-6471-3

Keywords

Navigation